Author 
Message 
TAGS:

Hide Tags

Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 2638
Location: United States (CA)

Re: If x ≠ 0 and x/x < x, which of the following must be true? [#permalink]
Show Tags
20 Jun 2017, 07:32
Marcab wrote: If \(x\neq{0}\) and \(\frac{x}{x}<x\), which of the following must be true?
(A) \(x>1\)
(B) \(x>1\)
(C) \(x<1\)
(D) \(x>1\)
(E) \(1<x<0\) We can simplify the given inequality: x/x < x x < (x)x (x)x > x If x is positive, we can divide both sides by x and obtain x > 1. If x is negative, we can also divide both sides by x, but we have to switch the inequality sign, so we have x < 1. We see that if x is positive, x > 1, which is choice C, and if x is negative, x < 1, which is choice D. However, since we don’t know whether x is positive or negative, both choice C and choice D “can be true,” not “must be true.” Let’s analyze further. If x is positive, x = x. So, x > 1 means x > 1, which is choice A. If x is negative, x = x. So, x < 1 means x < 1 or x > 1. However, because x is negative, we have 1 < x < 0, which is choice E. Again, since we don’t know whether x is positive or negative, both choice A and choice E “can be true,” not “must be true.” This leaves choice B as the correct answer. In fact, it’s the correct choice because the inequality x > 1 includes both x > 1 and 1 < x < 0. So, regardless of whether x is positive or negative, we can say x > 1. Answer: B
_________________
Scott WoodburyStewart
Founder and CEO
GMAT Quant SelfStudy Course
500+ lessons 3000+ practice problems 800+ HD solutions



Manager
Joined: 12 Feb 2015
Posts: 55
Location: India
GPA: 3.84

Re: If x ≠ 0 and x/x < x, which of the following must be true? [#permalink]
Show Tags
10 Aug 2017, 22:25
Bunuel wrote: Marcab wrote: If \(x\neq{0}\) and \(\frac{x}{x}<x\), which of the following must be true?
(A) \(x>1\)
(B) \(x>1\)
(C) \(x<1\)
(D) \(x>1\)
(E) \(1<x<0\)
Explanations required for this one. Not convinced at all with the OA.
My range is 1<x<0 and x>1. Notice that we are asked to find which of the options MUST be true, not COULD be true. Let's see what ranges does \(\frac{x}{x}< x\) give for \(x\). Two cases: If \(x<0\) then \(x=x\), hence in this case we would have: \(\frac{x}{x}<x\) > \(1<x\). But remember that we consider the range \(x<0\), so \(1<x<0\); If \(x>0\) then \(x=x\), hence in this case we would have: \(\frac{x}{x}<x\) > \(1<x\). So, \(\frac{x}{x}< x\) means that \(1<x<0\) or \(x>1\).Only option which is ALWAYS true is B. ANY \(x\) from the range \(1<x<0\) or \(x>1\) will definitely be more the \(1\). Answer: B. As for other options: A. \(x>1\). Not necessarily true since \(x\) could be 0.5; C. \(x<1\) > \(1<x<1\). Not necessarily true since \(x\) could be 2; D. \(x>1\) > \(x<1\) or \(x>1\). Not necessarily true since \(x\) could be 0.5; E. \(1<x<0\). Not necessarily true since \(x\) could be 2. P.S. Please read carefully and follow: http://gmatclub.com/forum/rulesforpos ... 33935.html Please pay attention to the rules #3 and 6. Thank you. If in case I multiply x both sides then inequality will not change and then if i approach like this then how the inequality should be solved : X<XX xxx>0 x(x1)>0 now either x>0 or x>1,x<0 x<1 how to proceed further to solve it to get the range as per the question.



Math Expert
Joined: 02 Sep 2009
Posts: 45423

Re: If x ≠ 0 and x/x < x, which of the following must be true? [#permalink]
Show Tags
10 Aug 2017, 23:43
himanshukamra2711 wrote: Bunuel wrote: Marcab wrote: If \(x\neq{0}\) and \(\frac{x}{x}<x\), which of the following must be true?
(A) \(x>1\)
(B) \(x>1\)
(C) \(x<1\)
(D) \(x>1\)
(E) \(1<x<0\)
Explanations required for this one. Not convinced at all with the OA.
My range is 1<x<0 and x>1. Notice that we are asked to find which of the options MUST be true, not COULD be true. Let's see what ranges does \(\frac{x}{x}< x\) give for \(x\). Two cases: If \(x<0\) then \(x=x\), hence in this case we would have: \(\frac{x}{x}<x\) > \(1<x\). But remember that we consider the range \(x<0\), so \(1<x<0\); If \(x>0\) then \(x=x\), hence in this case we would have: \(\frac{x}{x}<x\) > \(1<x\). So, \(\frac{x}{x}< x\) means that \(1<x<0\) or \(x>1\).Only option which is ALWAYS true is B. ANY \(x\) from the range \(1<x<0\) or \(x>1\) will definitely be more the \(1\). Answer: B. As for other options: A. \(x>1\). Not necessarily true since \(x\) could be 0.5; C. \(x<1\) > \(1<x<1\). Not necessarily true since \(x\) could be 2; D. \(x>1\) > \(x<1\) or \(x>1\). Not necessarily true since \(x\) could be 0.5; E. \(1<x<0\). Not necessarily true since \(x\) could be 2. P.S. Please read carefully and follow: http://gmatclub.com/forum/rulesforpos ... 33935.html Please pay attention to the rules #3 and 6. Thank you. If in case I multiply x both sides then inequality will not change and then if i approach like this then how the inequality should be solved : X<XX xxx>0 x(x1)>0 now either x>0 or x>1,x<0 x<1 how to proceed further to solve it to get the range as per the question. \(x(x1)>0\) Case 1: \(x > 0\) and \(x > 1\) (\(x < 1\) or \(x > 1\)) > \(x > 1\). Case 2: \(x < 0\) and \(x < 1\) (\(1 < x < 1\)) > \(1 < x < 0\). Finally, \(1 < x < 0\) or \(x > 1\).
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 02 Apr 2014
Posts: 485

Re: If x ≠ 0 and x/x < x, which of the following must be true? [#permalink]
Show Tags
28 Jan 2018, 00:30
given: x/x < x multiply by x on both sides (as we know the sign of x => safe to multiply by x) x < xx x  xx < 0 x(1x) < 0
if x < 0, then x has to be less than 1 to hold above inequality => 1 < x < 0 if x > 0, then x has to be greater than 1 to hold above inequality => x > 1 => x > 1
so range of x : 1 < x < 0, x > 1 => option B covers this range



Intern
Joined: 31 Aug 2016
Posts: 31

Re: If x ≠ 0 and x/x < x, which of the following must be true? [#permalink]
Show Tags
20 May 2018, 04:12
VeritasPrepKarishma wrote: Quote: If \(x\neq{0}\) and \(\frac{x}{x}<x\), which of the following must be true?
(A) \(x>1\)
(B) \(x>1\)
(C) \(x<1\)
(D) \(x>1\)
(E) \(1<x<0\)
Hi Karishma Can you pls help me with the answer to the above link. I was able to solve the inequality My answer after solving inequality is 1<x<0 or x>1 So how can be the answer not E The point of elimination for option e in the official explanation is as given below:How can x be 2 when the range is less than 0...... E. −1<x<0. Not necessarily true since x could be 2.
A 'must be true' question! They are absolutely straight forward if you get the fundamental but they can drive you crazy if you don't. "My answer after solving inequality is 1<x<0 or x>1" Perfect. That is the range of x for which the inequality works. So tell me, what values can x take? 1/2, 1/3, 2/3, 1.4, 2, 500, 123498 etc... Now the question is "which of the following must be true?" (A) \(x>1\) Are all these values greater than 1? No. (B) \(x>1\) Are all these values greater than 1? Yes. The answer. Note that you dont have to establish that all value greater than 1 should work for the inequality. You only have to establish that all values which work for the inequality must satisfy this condition. (C) \(x<1\) Not true for all values of x. (D) \(x>1\) Not true for all values of x. (E) \(1<x<0\) Not true for all values of x. x can take values 1.4, 2, 500 etc I wrote a post on this beautiful question sometime back: http://www.veritasprep.com/blog/2012/07 ... andsets/Hello Karishma, I understand everything from this Q. I just have one question. You can agree that we can say that: x<xx since x>0 and then reach the same solution by writing x(x1)>0. I have learned to not divide x/x<x > x>1 since I lose choices. In which situation do I deduce that x>1 and in which situation I must write that x^2x>0 .. and continue from there?



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8079
Location: Pune, India

Re: If x ≠ 0 and x/x < x, which of the following must be true? [#permalink]
Show Tags
20 May 2018, 20:26
standyonda wrote: VeritasPrepKarishma wrote: Quote: If \(x\neq{0}\) and \(\frac{x}{x}<x\), which of the following must be true?
(A) \(x>1\)
(B) \(x>1\)
(C) \(x<1\)
(D) \(x>1\)
(E) \(1<x<0\)
Hi Karishma Can you pls help me with the answer to the above link. I was able to solve the inequality My answer after solving inequality is 1<x<0 or x>1 So how can be the answer not E The point of elimination for option e in the official explanation is as given below:How can x be 2 when the range is less than 0...... E. −1<x<0. Not necessarily true since x could be 2.
A 'must be true' question! They are absolutely straight forward if you get the fundamental but they can drive you crazy if you don't. "My answer after solving inequality is 1<x<0 or x>1" Perfect. That is the range of x for which the inequality works. So tell me, what values can x take? 1/2, 1/3, 2/3, 1.4, 2, 500, 123498 etc... Now the question is "which of the following must be true?" (A) \(x>1\) Are all these values greater than 1? No. (B) \(x>1\) Are all these values greater than 1? Yes. The answer. Note that you dont have to establish that all value greater than 1 should work for the inequality. You only have to establish that all values which work for the inequality must satisfy this condition. (C) \(x<1\) Not true for all values of x. (D) \(x>1\) Not true for all values of x. (E) \(1<x<0\) Not true for all values of x. x can take values 1.4, 2, 500 etc I wrote a post on this beautiful question sometime back: http://www.veritasprep.com/blog/2012/07 ... andsets/Hello Karishma, I understand everything from this Q. I just have one question. You can agree that we can say that: x<xx since x>0 and then reach the same solution by writing x(x1)>0. I have learned to not divide x/x<x > x>1 since I lose choices. In which situation do I deduce that x>1 and in which situation I must write that x^2x>0 .. and continue from there? Yes, you can deduce \(x * (x1)>0\) For the product of the two factors to be positive, either both are positive or both are negative. EITHER x > 0 and x  1 > 0 (which is x > 1 > x > 1 or x < 1) So x > 1 OR x< 0 and x  1 < 0 (which is x < 1 > 1 < x < 1 ) So 1 < x < 0 So any value that x can take will either lie in 1 to 0 to will be greater than 1. So every value will be greater than 1 for sure. Answer (B)
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



Intern
Joined: 31 Aug 2016
Posts: 31

Re: If x ≠ 0 and x/x < x, which of the following must be true? [#permalink]
Show Tags
20 May 2018, 22:57
VeritasPrepKarishmaMy question is about the solution that was provided were you deduce that x/x=1 instead of moving x on the other side of the inequality. In algebra generally if you do that you lose solutions. Why do you use it like that here? And how do you know that you will not lose a x=0 or something else... ?



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8079
Location: Pune, India

Re: If x ≠ 0 and x/x < x, which of the following must be true? [#permalink]
Show Tags
21 May 2018, 01:14
standyonda wrote: VeritasPrepKarishmaMy question is about the solution that was provided were you deduce that x/x=1 instead of moving x on the other side of the inequality. In algebra generally if you do that you lose solutions. Why do you use it like that here? And how do you know that you will not lose a x=0 or something else... ? Can you please quote where I have done that. I wouldn't cancel until and unless I am looking for a partial solution.
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews




Re: If x ≠ 0 and x/x < x, which of the following must be true?
[#permalink]
21 May 2018, 01:14



Go to page
Previous
1 2 3
[ 48 posts ]



