GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 16 Oct 2019, 10:05

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If (x-1)/(x-3)>(x-2)/(x-4) is equivalent to a<x<b, the value of b-a is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
If (x-1)/(x-3)>(x-2)/(x-4) is equivalent to a<x<b, the value of b-a is  [#permalink]

Show Tags

New post 10 Mar 2019, 08:37
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

68% (02:40) correct 32% (02:08) wrong based on 25 sessions

HideShow timer Statistics

GMATH practice exercise (Quant Class 11)

If \(\,{{x - 1} \over {x - 3}}\,>\,{{x - 2} \over {x - 4}}\,\) is equivalent to \(\,a < x < b\,\), the value of \(b-a\) is:

(A) 0.25
(B) 0.5
(C) 0.75
(D) 1
(E) 1.25

_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
NUS School Moderator
avatar
V
Joined: 18 Jul 2018
Posts: 1022
Location: India
Concentration: Finance, Marketing
WE: Engineering (Energy and Utilities)
Reviews Badge
Re: If (x-1)/(x-3)>(x-2)/(x-4) is equivalent to a<x<b, the value of b-a is  [#permalink]

Show Tags

New post 10 Mar 2019, 09:35
1
Bring all the equations to the LHS.

\(\frac{(x-1)}{(x-3)}-\frac{(x-2)}{(x-4)}>0\)

Take the LCM, then we get,

\(\frac{x^2-5x+4-x^2+5x-6}{(x-3)(x-4)}>0\)

Now, x = 3 or x = 4.
Plotting this in wavy curve, we get.
(-∞, 3) to (4,+∞)

So a<x<b can be written as 3<x<4
b-a = 4-3 = 1

D is the answer.
_________________
Press +1 Kudos If my post helps!
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: If (x-1)/(x-3)>(x-2)/(x-4) is equivalent to a<x<b, the value of b-a is  [#permalink]

Show Tags

New post 10 Mar 2019, 16:36
fskilnik wrote:
GMATH practice exercise (Quant Class 11)

If \(\,{{x - 1} \over {x - 3}}\,>\,{{x - 2} \over {x - 4}}\,\) is equivalent to \(\,a < x < b\,\), the value of \(b-a\) is:

(A) 0.25
(B) 0.5
(C) 0.75
(D) 1
(E) 1.25

Let´s see a "non-standard" (but absolutely rigorous) approach, very interesting for high-level candidates:

\({{x - 1} \over {x - 3}} > {{x - 2} \over {x - 4}}\,\,\,\left( * \right)\,\,\,\, \Leftrightarrow \,\,\,\,\,a < x < b\)

\(? = b - a\)


\(\left( * \right)\,\,\,\,\,\mathop \Leftrightarrow \limits^{ \cdot \left( {x - 3} \right)\left( {x - 4} \right)} \,\,\,\,\left\{ \matrix{
\,\left( {x - 1} \right)\left( {x - 4} \right) > \left( {x - 2} \right)\left( {x - 3} \right)\,\,\,{\rm{if}}\,\,\,\,\left( {x - 3} \right)\left( {x - 4} \right) > 0\,\,\,\left( {\rm{I}} \right) \hfill \cr
\left( {x - 1} \right)\left( {x - 4} \right) < \left( {x - 2} \right)\left( {x - 3} \right)\,\,\,{\rm{if}}\,\,\,\,\left( {x - 3} \right)\left( {x - 4} \right) < 0\,\,\,\left( {{\rm{II}}} \right) \hfill \cr} \right.\)

\(\left( {\rm{I}} \right)\,\,\,\,\left( {x - 1} \right)\left( {x - 4} \right) > \left( {x - 2} \right)\left( {x - 3} \right)\,\,\,\,\, \Leftrightarrow \,\,\,\,{x^2} - 5x + 4 > {x^2} - 5x + 6\,\,\,{\rm{impossible!}}\)


\(\left( {{\rm{II}}} \right)\,\,\,\,\left( {x - 1} \right)\left( {x - 4} \right) < \left( {x - 2} \right)\left( {x - 3} \right)\,\,\,\,\, \Leftrightarrow \,\,\,\,{x^2} - 5x + 4 < {x^2} - 5x + 6\,\,\,{\rm{always}}\,\,\left[ {\,{\rm{for}}\,\,\left( {x - 3} \right)\left( {x - 4} \right) < 0\,} \right]\,\,!\,{\rm{!}}\)

\(\left( {x - 3} \right)\left( {x - 4} \right) < 0\,\,\,\,\, \Leftrightarrow \,\,\,\,\,3 < x < 4\)


\(? = 4 - 3 = 1\)


The correct answer is (D).


We follow the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: If (x-1)/(x-3)>(x-2)/(x-4) is equivalent to a<x<b, the value of b-a is  [#permalink]

Show Tags

New post 10 Mar 2019, 16:46
fskilnik wrote:
GMATH practice exercise (Quant Class 11)

If \(\,{{x - 1} \over {x - 3}}\,>\,{{x - 2} \over {x - 4}}\,\) is equivalent to \(\,a < x < b\,\), the value of \(b-a\) is:

(A) 0.25
(B) 0.5
(C) 0.75
(D) 1
(E) 1.25

Classical Approach:

\({{x - 1} \over {x - 3}} > {{x - 2} \over {x - 4}}\,\,\,\,\, \Leftrightarrow \,\,\,\,\,{{x - 1} \over {x - 3}} - {{x - 2} \over {x - 4}} > 0\,\,\,\,\, \Leftrightarrow \,\,\,\,{{\left( {x - 1} \right)\left( {x - 4} \right)} \over {\left( {x - 3} \right)\left( {x - 4} \right)}} - {{\left( {x - 2} \right)\left( {x - 3} \right)} \over {\left( {x - 4} \right)\left( {x - 3} \right)}} > 0\,\,\)

\(\,\, \Leftrightarrow \,\,\,\,{{ - 2} \over {\left( {x - 3} \right)\left( {x - 4} \right)}} > 0\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\left( {x - 3} \right)\left( {x - 4} \right) < 0\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\,3 < x < 4\)

Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
GMAT Club Bot
Re: If (x-1)/(x-3)>(x-2)/(x-4) is equivalent to a<x<b, the value of b-a is   [#permalink] 10 Mar 2019, 16:46
Display posts from previous: Sort by

If (x-1)/(x-3)>(x-2)/(x-4) is equivalent to a<x<b, the value of b-a is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne