Last visit was: 27 Mar 2025, 23:41 It is currently 27 Mar 2025, 23:41
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
505-555 Level|   Algebra|   Exponents|                              
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,115
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,115
Kudos: 711,441
 [152]
14
Kudos
Add Kudos
138
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,115
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,115
Kudos: 711,441
 [56]
22
Kudos
Add Kudos
34
Bookmarks
Bookmark this Post
avatar
PareshGmat
Joined: 27 Dec 2012
Last visit: 10 Jul 2016
Posts: 1,543
Own Kudos:
7,706
 [32]
Given Kudos: 193
Status:The Best Or Nothing
Location: India
Concentration: General Management, Technology
WE:Information Technology (Computer Software)
Posts: 1,543
Kudos: 7,706
 [32]
23
Kudos
Add Kudos
9
Bookmarks
Bookmark this Post
General Discussion
User avatar
WoundedTiger
Joined: 25 Apr 2012
Last visit: 25 Sep 2024
Posts: 524
Own Kudos:
2,429
 [4]
Given Kudos: 740
Location: India
GPA: 3.21
WE:Business Development (Other)
Products:
Posts: 524
Kudos: 2,429
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If x and k are integers and \((12^x)(4^{2x+ 1})= (2^k)(3^2)\), what is the value of k ?

(A) 5
(B) 7
(C) 10
(D) 12
(E) 14


Sol: The given expression can be reduced to (3^x*4^x)4^(2x+1)= 2^k*3^2

So we see that 3^x=3^2 or x=2

Also 4^x*4^(2x+1) can be written as 4^3x+1 =2^k or 2^2(3x+1)= 2^k or k=2*(3x+1) or k=14

Ans is E

600 level is okay.
User avatar
sanjoo
Joined: 06 Aug 2011
Last visit: 24 Dec 2016
Posts: 267
Own Kudos:
638
 [1]
Given Kudos: 82
Posts: 267
Kudos: 638
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Its E..

12=3*2^2

4^2x+1=2^2(2x+1)

well will get x=2..

and 2x+4x+2=k

6x+2=k
x=2
k=14
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 3,008
Own Kudos:
7,593
 [3]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 3,008
Kudos: 7,593
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
If x and k are integers and \((12^x)(4^{2x+ 1})= (2^k)(3^2)\), what is the value of k ?

(A) 5
(B) 7
(C) 10
(D) 12
(E) 14

Let’s simplify the given equation:

(3 * 2^2)^x * (2^2)^(2x + 1) = 2^k * 3^2

3^x * 2^(2x) * 2^(4x + 2) = 2^k * 3^2

3^x * 2^(6x + 2) = 3^2 * 2^k

Equating the exponents with the like bases, we see that:

x = 2 and 6x + 2 = k

Thus, k = 6(2) + 2 = 14.

Answer: E
User avatar
dave13
Joined: 09 Mar 2016
Last visit: 23 Nov 2024
Posts: 1,120
Own Kudos:
1,071
 [1]
Given Kudos: 3,851
Posts: 1,120
Kudos: 1,071
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
SOLUTION

If x and k are integers and \((12^x)(4^{2x+ 1})= (2^k)(3^2)\), what is the value of k ?

(A) 5
(B) 7
(C) 10
(D) 12
(E) 14

\((12^x)(4^{2x+ 1})= (2^k)(3^2)\);

\((2^{2x}*3^x)(2^{2(2x+ 1)})= (2^k)(3^2)\);

\((2^{2x+2(2x+ 1)}*3^x)= (2^k)(3^2)\);

Equate the powers of 3 --> \(x=2\);
Equate the powers of 2 --> \(2x+2(2x+ 1)=k\) --> \(6x+2=k\) --> \(k=14\).

Answer: E.


Hi Bunuel

\((2^{2x+2(2x+ 1)}*3^x)= (2^k)(3^2)\); after this

\((2^{6x+2}*3^x)= (2^k)(3^2)\); <--- i get this

how do you Equate the powers of 3 --> \(x=2\); :? where do you see power of 3 ? :? how you get 2 :?

how do you Equate the powers of 2 --> \(2x+2(2x+ 1)=k\) --> \(6x+2=k\) --> \(k=14\). and get 14 :?

i know this rule -->

if \(a^x = a^y\) then \(x = y\)

in other words if the bases match then exponents are equal.

please explain :) \(thank you ^ {1000}\)

:)
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,115
Own Kudos:
711,441
 [2]
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,115
Kudos: 711,441
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dave13
Bunuel
SOLUTION

If x and k are integers and \((12^x)(4^{2x+ 1})= (2^k)(3^2)\), what is the value of k ?

(A) 5
(B) 7
(C) 10
(D) 12
(E) 14

\((12^x)(4^{2x+ 1})= (2^k)(3^2)\);

\((2^{2x}*3^x)(2^{2(2x+ 1)})= (2^k)(3^2)\);

\((2^{2x+2(2x+ 1)}*3^x)= (2^k)(3^2)\);

Equate the powers of 3 --> \(x=2\);
Equate the powers of 2 --> \(2x+2(2x+ 1)=k\) --> \(6x+2=k\) --> \(k=14\).

Answer: E.


Hi Bunuel

\((2^{2x+2(2x+ 1)}*3^x)= (2^k)(3^2)\); after this

\((2^{6x+2}*3^x)= (2^k)(3^2)\); \(x=2\); :? [color=#ff0000] where do you see power of 3 ? :? how you get 2 :?

how do you Equate the powers of 2 --> \(2x+2(2x+ 1)=k\) --> \(6x+2=k\) --> \(k=14\). and get 14 :?

i know this rule -->

if \(a^x = a^y\) then \(x = y\)

in other words if the bases match then exponents are equal.

please explain :) \(thank you ^ {1000}\)

:)

2^(2x+2(2x+ 1))*3^x= (2^k)*(3^2);

Equate the powers of 3 --> \(x=2\);

Next, equate the powers of 2: \(2x+2(2x+ 1)=k\) --> \(6x+2=k\). SINCE x = 2 (form above), then \(k=14\).
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 13 May 2024
Posts: 6,769
Own Kudos:
33,155
 [9]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,769
Kudos: 33,155
 [9]
7
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Bunuel
If x and k are integers and \((12^x)(4^{2x+ 1})= (2^k)(3^2)\), what is the value of k ?

(A) 5
(B) 7
(C) 10
(D) 12
(E) 14

Given: \((12^x)(4^{2x+ 1})= (2^k)(3^2)\)

Rewrite \(12\) and \(4\) as follows: \([(2^2)(3^1)]^x[(2^2)^{2x+ 1}]= (2^k)(3^2)\)

Apply exponent laws to get: \((2^{2x})(3^x)(2^{4x+ 2})= (2^k)(3^2)\)

On the left side, combine the powers of \(2\) to get: \((2^{6x+2})(3^x)= (2^k)(3^2)\)

At this point we can see that \(6x+2 = k\) AND \(x = 2\)

Take: \(6x+2 = k\)

Replace \(x\) with \(2\) to get: \(6(2)+2 = k\)

Evaluate: \(14 = k\)

Answer: E

Cheers,
Brent
User avatar
BlueRocketAsh
Joined: 11 Oct 2019
Last visit: 28 Aug 2020
Posts: 76
Own Kudos:
12
 [1]
Given Kudos: 2
Posts: 76
Kudos: 12
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
\(12^x4^{(2x+1)}= (2^k)(3^2)\)
\((3*2^2)^x(2^2)^{(2x+1)}= (2^k)(3^2)\)
\(3^x2^{x+2(2x+1)}= (2^k)(3^2)\)

\(x=2\)
\(k=2x+2(2x+1)\)
\(k=2*2+2(2*2+1)\)
\(k=14\)

Answer E
User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 26 Mar 2025
Posts: 5,562
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,562
Kudos: 4,911
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Asked: If x and k are integers and \((12^x)(4^{2x+ 1})= (2^k)(3^2)\), what is the value of k ?

\(3^x*2^{2x}*2^{4x+2} = 2^k*3^2\)
\(2^{6x+2}*3^x = 2^k*3^2\)

Equating the powers of 3 & 2 respectively, we get
x = 2
k = 6x+2 = 14

IMO E
User avatar
huongvo277
Joined: 22 Feb 2024
Last visit: 01 Dec 2024
Posts: 5
Own Kudos:
Given Kudos: 254
Posts: 5
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
\((12^{x})(4^{2x+1}) = (2^{k})(3^{2})\), find value of k

Break down 12 and 4 into smaller parts

\((3*4^{x})(2*2)^{2x+1} = (2^{k})(3^{2})\)

\((3*2*2)^{x}(2*2)^{2x+1} = (2^{k})(3^{2})\)

Apply exponents

\((3^{x}*2^{x}*2^{x})*(2^{2x+1}*2^{2x+1}) = (2^{k})(3^{2})\)

Add exponents with same base together

\(3^{x}*2^{6x+2} = (2^{k})(3^{2})\)

Solve for base 3 to get x

\(3^{x}=3^{2}\)

\(x=2\)

Apply x to k formula

\(2^{k}=2^{6x+2}\)

\(k=6x+2\)

\(k=6(2)+2\)

\(k=14\)
Moderators:
Math Expert
100115 posts
PS Forum Moderator
519 posts