Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Have you ever wondered how to score a PERFECT 805 on the GMAT? Meet Julia, a banking professional who used the Target Test Prep course to achieve this incredible feat. Julia's story is nothing short of an inspiration.
Think a 100% GMAT Verbal score is out of your reach? Target Test Prep will make you think again! Our course uses techniques such as topical study and spaced repetition to maximize knowledge retention and make studying simple and fun.
GMAT Club 12 Days of Christmas is a 4th Annual GMAT Club Winter Competition based on solving questions. This is the Winter GMAT competition on GMAT Club with an amazing opportunity to win over $40,000 worth of prizes!
Join Manhattan Prep instructor Whitney Garner for a fun—and thorough—review of logic-based (non-math) problems, with a particular emphasis on Data Sufficiency and Two-Parts.
Here is the essential guide to securing scholarships as an MBA student! In this video, we explore the various types of scholarships available, including need-based and merit-based options.
Be sure to select an answer first to save it in the Error Log before revealing the correct answer (OA)!
Difficulty:
(N/A)
Question Stats:
0%
(00:00)
correct
0%
(00:00)
wrong
based on 1
sessions
History
Date
Time
Result
Not Attempted Yet
1. In an insurance company, each policy has a paper record and an
electric record. For those policies having incorrect paper record,
60% also having incorrect electric record; For those policies having
incorrect electric record, 75% also having incorrect paper record. 3%
of all policies have both incorrect paper and incorrect electric
records. If we randomly pick out one policy, what's the probability
that the one having both correct paper and correct electric records?
Please explain steps..
Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Still interested in this question? Check out the "Best Topics" block below for a better discussion on this exact question, as well as several more related questions.
I will try a shorter and simpler route:
Let a = incorrect Paper records
b = incorrect Electronic recods
c = Total policies.
Now from problem statement => 0.6a = 0.75b (they are same i.e. the ones having both incorrect paper and electric records)
Also, 0.03c = 0.6a = 0.75b --------- eq 1. (all give same data but in a different way)
Therefore, probability for selecting a policy with both correct electric and paper record = (c - b - a)/c
= 0.91 (substituting a,b from above equation -1 )
am i riht praet. I must say its a very tricky problem.
-Vicks
In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also have incorrect electric record; For those policies having incorrect electric record, 75% also having incorrect paper record. 3% of all policies have both incorrect paper and incorrect electric records. If we randomly pick out one policy, what's the probability that the one having both correct paper and correct electric records?
Please explain steps..
ok..heres the answer
we use one of the most important probability concepts
P( correct paper and correct electric) = 1- P ( incorrect paper and incorrect electric)
Let T be total policies
Let x be total incorrect paper policies
Let y be total incorrect electric policies
It follows from the problem statement that
0.03T is the number of both incorrect electric and paper policies
0.6x is the number of both incorrect electric and paper ..
0.75y is the number of both incorrect electric and paper...
So now that all are the same, we have
0.03 T = 0.6 x = 0.75 y
x = 0.03 T/0.6 = 5% * T
y= 0.03 T/0.75 = 4 % * T
Vicky , x + y double counts the "BOTH" incorrect part.
So total incorrect paper OR total incorrect electric = x +y - both incorrect
5% T + 4% T - 3% T = 6%
Required Prob = 1 - 0.06 = 0.94
Answer 0.94
Thanks
Praetorian
Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.