GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Jul 2018, 02:57

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

In how many ways can 16 different gifts be divided among four children

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47035
In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 26 Mar 2015, 04:25
1
12
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

58% (01:09) correct 42% (01:03) wrong based on 289 sessions

HideShow timer Statistics

In how many ways can 16 different gifts be divided among four children such that each child receives exactly four gifts?

A. 16^4
B. (4!)^4
C. 16!/(4!)^4
D. 16!/4!
E. 4^16


Kudos for a correct solution.

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Director
Director
User avatar
Joined: 07 Aug 2011
Posts: 561
Concentration: International Business, Technology
GMAT 1: 630 Q49 V27
GMAT ToolKit User
In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 26 Mar 2015, 06:09
2
Bunuel wrote:
In how many ways can 16 different gifts be divided among four children such that each child receives exactly four gifts?

A. 16^4
B. (4!)^4
C. 16!/(4!)^4
D. 16!/4!
E. 4^16


Kudos for a correct solution.



Answer C

\(C^4_1_6 * C^4_1_2 * C^4_8 = \frac{16 * 15 *14 *13}{4*3*2} * \frac{12*11*10*9}{4*3*2} * \frac{8*7*6*5}{4*3*2}\)
= \(\frac{16!}{4!^4}\)
_________________

Thanks,
Lucky

_______________________________________________________
Kindly press the Image to appreciate my post !! :-)

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47035
Re: In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 30 Mar 2015, 03:33
Bunuel wrote:
In how many ways can 16 different gifts be divided among four children such that each child receives exactly four gifts?

A. 16^4
B. (4!)^4
C. 16!/(4!)^4
D. 16!/4!
E. 4^16


Kudos for a correct solution.


MAGOOSH OFFICIAL SOLUTION:
Attachment:
Count_Prob_16gifts.png
Count_Prob_16gifts.png [ 26.52 KiB | Viewed 6418 times ]

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

1 KUDOS received
Current Student
User avatar
B
Joined: 25 Nov 2014
Posts: 102
Concentration: Entrepreneurship, Technology
GMAT 1: 680 Q47 V38
GPA: 4
Re: In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 30 Mar 2015, 10:46
1
1
Total 16 different Gifts, and 4 children.
Thus any one child gets 16C4 gifts,
then the other child gets 12C4 gifts(16 total - 4 already given),
then the third one gets 8C4 gifts,
and the last child gets 4C4 gifts.
Since order in which each child gets the gift is not imp, thus, ans :
16C4 * 12C4 * 8C4 * 4C4 = 16! / (4!)^4
Ans : C.
_________________

Kudos!!

Expert Post
SVP
SVP
avatar
B
Joined: 06 Nov 2014
Posts: 1888
Re: In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 31 Mar 2015, 03:14
Bunuel wrote:
In how many ways can 16 different gifts be divided among four children such that each child receives exactly four gifts?

A. 16^4
B. (4!)^4
C. 16!/(4!)^4
D. 16!/4!
E. 4^16


Kudos for a correct solution.


16 gifts can be distributed to 4 children in 16C4 ways.
Remaining 12 gifts can be distributed to 4 children in 12C4 ways.
Remaining 8 gifts can be distributed to 4 children in 8C4 ways.
Lastly, remaining 4 gifts can be distributed to 4 children in 4C4 ways.

Total ways = 16C4 * 12C4 * 8C4 * 4C4
= 16!/(4!)^4

Hence option (C).
--
Optimus Prep's GMAT On Demand course for only $299 covers all verbal and quant. concepts in detail. Visit the following link to get your 7 days free trial account: http://www.optimus-prep.com/gmat-on-demand-course
SVP
SVP
avatar
P
Joined: 12 Dec 2016
Posts: 1875
Location: United States
GMAT 1: 700 Q49 V33
GPA: 3.64
GMAT ToolKit User Premium Member
Re: In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 14 Jan 2018, 02:52
help, VeritasPrepKarishma
why the formula (ax)! / a! (x!)^a does not work?
Expert Post
GMAT Club Legend
GMAT Club Legend
User avatar
P
Joined: 16 Oct 2010
Posts: 8124
Location: Pune, India
Re: In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 16 Jan 2018, 01:04
chesstitans wrote:
help, VeritasPrepKarishma
why the formula (ax)! / a! (x!)^a does not work?


Note that you are distributing 16 gifts among 4 children. The children are distinct. If you were distributing the gifts among 4 identical baskets such that each basket has exactly 4 gifts, then you would need to divide by 4! too.

Note where this formula comes from:

Put all 16 gifts in a row in 16! ways.


G1, G2, G3, G4, ... , G16

Now split them into 4 groups

G1, G2, G3, G4 || G5, G6, G7, G8 || ... || G13, G14, G15, G16

If the 4 groups are identical (like identical baskets), divide by 4!

16!/4!

Now since we don't want to arrange the gifts within the group, divide by 4! four times

16!/4!*(4!)^4

But since we have 4 distinct children here, we will not divide by the first 4!
_________________

Karishma
Private Tutor for GMAT
Contact: bansal.karishma@gmail.com

Expert Post
Target Test Prep Representative
User avatar
G
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 2918
Location: United States (CA)
Re: In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 18 Jan 2018, 14:23
Bunuel wrote:
In how many ways can 16 different gifts be divided among four children such that each child receives exactly four gifts?

A. 16^4
B. (4!)^4
C. 16!/(4!)^4
D. 16!/4!
E. 4^16


The first child can choose any 4 gifts from the 16 gifts; thus (s)he has 16C4 ways to choose them. Once (s)he has chosen his or her 4 gifts, the second child can choose any 4 gifts from the remaining 12 gifts; thus (s)he has 12C4 ways to choose them. Likewise, the third child has 8C4 ways to choose his or her 4 gifts and the last child has 4C4 ways to choose his or her 4 gifts.
Thus the total number of ways the 16 gifts can be divided among the four children such that each child will receive 4 gifts is:

16C4 x 12C4 x 8C4 x 4C4

(16 x 15 x 14 x 13)/4! x (12 x 11 x 10 x 9)/4! x (8 x 7 x 6 x 5)/4! x (4 x 3 x 2 x 1)/4!

(16 x 15 x 14 x 13 x … x 4 x 3 x 2 x 1)/(4! x 4! x 4! x 4!)

16!/(4!)^4

Answer: C
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Expert Post
SVP
SVP
User avatar
P
Joined: 08 Jul 2010
Posts: 2119
Location: India
GMAT: INSIGHT
WE: Education (Education)
Reviews Badge
Re: In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 21 Jan 2018, 00:35
Bunuel wrote:
In how many ways can 16 different gifts be divided among four children such that each child receives exactly four gifts?

A. 16^4
B. (4!)^4
C. 16!/(4!)^4
D. 16!/4!
E. 4^16


Kudos for a correct solution.


METHOD-1

Gift for first child can be selected in 16C4 ways = 1820
Gift for first child can be selected in 12C4 ways = 495
Gift for first child can be selected in 8C4 ways = 70
Gift for first child can be selected in 4C4 ways = 1

Total Ways to distribute gifts = (16C4*12C4*8C4*4C4) = 16!/(4!)^4

METHOD-2

We can arrange the 16 gifts in 16! ways considering that first 4 gifts are for 1st child, next 4 gifts are for 2nd child and so on...

But since the arrangement of 4 gifts received by child is irrelevant included in 16! so we need to eliminate the effect by dividing the result by 4! four times as there are four groups of 4gifts each group

hence answer = 16!/(4!^4)


Answer: option C


In my opinion, the numbers given here are too big for GMAT to consider. This questions would have been apt if there were 4 children with 8 gifts where each child was to receive 2 gifts.
_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Expert Post
Top Contributor
CEO
CEO
User avatar
P
Joined: 12 Sep 2015
Posts: 2630
Location: Canada
Re: In how many ways can 16 different gifts be divided among four children [#permalink]

Show Tags

New post 22 Apr 2018, 06:47
Top Contributor
1
Bunuel wrote:
In how many ways can 16 different gifts be divided among four children such that each child receives exactly four gifts?

A. 16^4
B. (4!)^4
C. 16!/(4!)^4
D. 16!/4!
E. 4^16


Kudos for a correct solution.


Let's say the children are named A, B, C, and D

Stage 1: Select 4 gifts to give to child A
Since the order in which we select the 4 gifts does not matter, we can use combinations.
We can select 4 gifts from 16 gifts in 16C4 ways (= 16!/(4!)(12!))
So, we can complete stage 1 in 16!/(4!)(12!) ways

Stage 2: select 4 gifts to give to child B
There are now 12 gifts remaining
Since the order in which we select the 4 gifts does not matter, we can use combinations.
We can select 4 gifts from 12 gifts in 12C4 ways (= 12!/(4!)(8!))
So, we can complete stage 2 in 12!/(4!)(8!) ways


Stage 3: select 4 gifts to give to child C
There are now 8 gifts remaining
We can select 4 gifts from 8 gifts in 8C4 ways (= 8!/(4!)(4!))
So, we can complete stage 3 in 8!/(4!)(4!) ways

Stage 4: select 4 gifts to give to child D
There are now 4 gifts remaining
NOTE: There's only 1 way to select 4 gifts from 4 gifts, but if we want the answer to look like the official answer, let's do the following:
We can select 4 gifts from 4 gifts in 4C4 ways (= 4!/4!)
So, we can complete stage 4 in 4!/4! ways

By the Fundamental Counting Principle (FCP), we can complete all 4 stages (and thus distribute all 16 gifts) in [16!/(4!)(12!)][12!/(4!)(8!)][8!/(4!)(4!)][4!/4!] ways

A BUNCH of terms cancel out to give us = 16!/(4!)⁴

Answer: C

Note: the FCP can be used to solve the MAJORITY of counting questions on the GMAT. So, be sure to learn it.

RELATED VIDEOS



_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

Re: In how many ways can 16 different gifts be divided among four children   [#permalink] 22 Apr 2018, 06:47
Display posts from previous: Sort by

In how many ways can 16 different gifts be divided among four children

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.