Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

 It is currently 15 Jul 2019, 23:47

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# In the xy-plane, find the area of a circle that has center (-4, 1), an

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 56236
In the xy-plane, find the area of a circle that has center (-4, 1), an  [#permalink]

### Show Tags

28 Mar 2018, 03:00
1
2
00:00

Difficulty:

15% (low)

Question Stats:

91% (01:26) correct 9% (00:46) wrong based on 53 sessions

### HideShow timer Statistics

In the xy-plane, find the area of a circle that has center (-4, 1), and passes through the point (2, -5)?

(A) $$12\pi$$
(B) $$20\pi$$
(C) $$40\pi$$
(D) $$52\pi$$
(E) $$72\pi$$

_________________
Retired Moderator
Joined: 07 Jan 2016
Posts: 1090
Location: India
GMAT 1: 710 Q49 V36
In the xy-plane, find the area of a circle that has center (-4, 1), an  [#permalink]

### Show Tags

28 Mar 2018, 04:26
1
Bunuel wrote:
In the xy-plane, find the area of a circle that has center (-4, 1), and passes through the point (2, -5)?

(A) $$12\pi$$
(B) $$20\pi$$
(C) $$40\pi$$
(D) $$52\pi$$
(E) $$72\pi$$

r of the circle = distance b/w points

dist = rt [(2+4) + (-5-1)} = 6rt2

e imo
Senior SC Moderator
Joined: 22 May 2016
Posts: 3063
In the xy-plane, find the area of a circle that has center (-4, 1), an  [#permalink]

### Show Tags

28 Mar 2018, 09:22
1
Bunuel wrote:
In the xy-plane, find the area of a circle that has center (-4, 1), and passes through the point (2, -5)?

(A) $$12\pi$$
(B) $$20\pi$$
(C) $$40\pi$$
(D) $$52\pi$$
(E) $$72\pi$$

Standard equation of a circle, where (h,k), are center coordinates:

$$(x - h)^2 + (y - k)^2 = r^2$$
$$(h,k) = (-4,1)$$
$$(x + 4)^2 + (y - 1)^2 = r^2$$

Insert (2,-5) into the equation to find $$r^2$$.
$$(2 + 4)^2 + (-5-1)^2 = r^2$$
$$6^2 + 6^2 = r^2$$
$$r^2 = 72$$

Leave $$r^2$$

Area = $$\pi r^2 =72\pi$$

_________________
SC Butler has resumed!
Get two SC questions to practice, whose links you can find by date, here.

Tell me, what is it you plan to do with your one wild and precious life? -- Mary Oliver
Manager
Status: The journey is always more beautiful than the destination
Affiliations: Computer Science
Joined: 24 Apr 2017
Posts: 52
Location: India
Concentration: Statistics, Strategy
GMAT 1: 570 Q40 V28
GPA: 3.14
Re: In the xy-plane, find the area of a circle that has center (-4, 1), an  [#permalink]

### Show Tags

28 Mar 2018, 10:23
Bunuel wrote:
In the xy-plane, find the area of a circle that has center (-4, 1), and passes through the point (2, -5)?

(A) $$12\pi$$
(B) $$20\pi$$
(C) $$40\pi$$
(D) $$52\pi$$
(E) $$72\pi$$

Formula of square of a circle = $$pi*r^2$$
here radius. r = the distance between centre and the given point(2, -5)

We know, the distance between two points = $$\sqrt{(X1 - X2)^2 + (Y1-Y2)^2}$$

so r = $$\sqrt{(-4-2)^2 + (1- (-5))^2}$$
So, the area = $$pi*r^2$$ = $$72pi$$
_________________
Sky is the limit. 800 is the limit.
Re: In the xy-plane, find the area of a circle that has center (-4, 1), an   [#permalink] 28 Mar 2018, 10:23
Display posts from previous: Sort by