Bunuel wrote:

Is 10m > 5n - k?

(1) n = 2m

(2) |k| = -k

\(10m\,\,\mathop > \limits^? \,\,5n - k\)

\(\left( 1 \right)\,\,\,n = 2m\,\,\,\,\left\{ \matrix{

\,{\rm{Take}}\,\,\,\left( {n,m,k} \right) = \left( {0,0,0} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\,\, \hfill \cr

\,{\rm{Take}}\,\,\,\left( {n,m,k} \right) = \left( {2,1,1} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\,\,\, \hfill \cr} \right.\,\)

\(\left( 2 \right)\,\,\,\,\left| k \right| = - k\,\,\,\, \Leftrightarrow \,\,\,\,k \le 0\)

\(\left\{ \matrix{

\,{\rm{Take}}\,\,\,\left( {n,m,k} \right) = \left( {0,0,0} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\,\, \hfill \cr

\,{\rm{Take}}\,\,\,\left( {n,m,k} \right) = \left( {0,1, - 1} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\,\,\, \hfill \cr} \right.\)

\(\left( {1 + 2} \right)\,\,\,\left\{ \matrix{

10m\,\,\mathop > \limits^? \,\,5\left( {2m} \right) - k\,\,\,\,\, \Leftrightarrow \,\,\,\,k\,\,\mathop > \limits^? \,\,0 \hfill \cr

k \le 0 \hfill \cr} \right.\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,{\rm{SUFF}}.\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik ::

GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here:

https://gmath.net