Oct 14 08:00 PM PDT  11:00 PM PDT Join a 4day FREE online boot camp to kick off your GMAT preparation and get you into your dream bschool in R2.**Limited for the first 99 registrants. Register today! Oct 15 12:00 PM PDT  01:00 PM PDT Join this live GMAT class with GMAT Ninja to learn to conquer your fears of long, kooky GMAT questions. Oct 16 08:00 PM PDT  09:00 PM PDT EMPOWERgmat is giving away the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299) Oct 19 07:00 AM PDT  09:00 AM PDT Does GMAT RC seem like an uphill battle? eGMAT is conducting a free webinar to help you learn reading strategies that can enable you to solve 700+ level RC questions with at least 90% accuracy in less than 10 days. Sat., Oct 19th at 7 am PDT Oct 20 07:00 AM PDT  09:00 AM PDT Get personalized insights on how to achieve your Target Quant Score.
Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 30 May 2013
Posts: 12

Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
Updated on: 05 Jun 2013, 00:12
Question Stats:
43% (01:44) correct 57% (01:54) wrong based on 275 sessions
HideShow timer Statistics
Is x^2 + y^2 > x^2  y^2? (1) x > y (2) x > 0
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by makhija1 on 04 Jun 2013, 20:45.
Last edited by Bunuel on 05 Jun 2013, 00:12, edited 1 time in total.
Renamed the topic and added the OA.



Intern
Joined: 30 May 2013
Posts: 12

Re: Answer without doing any algebra
[#permalink]
Show Tags
04 Jun 2013, 20:49
IMO, the answer should be E. 1) For (2,1), the answer to target ques is Yes; but for (1,0), the answer is No. Thus the statement is insuff. 2) The same values from above can be used to get two contradicting answers as there is no indication of what y should be. So this statement is also insuff. Any thoughts? FYI, I got this question from an article posted in Beat the GMAT forum; it didn't say the what the OA was... Sorry!



Intern
Joined: 22 Feb 2013
Posts: 9

Re: Answer without doing any algebra
[#permalink]
Show Tags
04 Jun 2013, 21:41
I am also going with E. When Y = 0, it's never true.



Veritas Prep GMAT Instructor
Joined: 11 Dec 2012
Posts: 312

Re: Answer without doing any algebra
[#permalink]
Show Tags
04 Jun 2013, 22:01
Yahtzeefish wrote: I am also going with E. When Y = 0, it's never true. I like this succinct answer from Yahtzeefish! The question is baiting you into thinking about negatives, but answer will never be negative because all the terms are squared. Since the terms are squared, they must necessarily be positive (or zero). The absolute values thus change nothing to the equation and can be ignored. However, all values of Y, positive or negative, will end up being positive under the square, and therefore smaller in the second half of the equation than in the first. The number that will mess everything up is zero. Had statement 2 indicated that y>0, we'd have a different answer, but since the statements only care about the value of x and offer no real limitations on the value of y, the answer will be that both statements combined are still not sufficient (answer E) Hope this helps! Ron
_________________



Verbal Forum Moderator
Joined: 10 Oct 2012
Posts: 591

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
Updated on: 06 Jun 2013, 02:42
WholeLottaLove wrote: Could someone post a step by step explanation? This is an interesting problem but I am having some trouble figuring it out!
Thanks! x is always a nonnegative entity. Thus, the given expression can be safely squared on both sides > Is \((x^2+y^2)^2>(x^2y^2)^2\) or \((x^2+y^2 + x^2y^2)[x^2+y^2 ( x^2y^2)] >0 > IS 2x^2*2y^2>0.\) Thus, we have to answer the questions : Is \(4x^2y^2>0\). Now we know that this expression WILL always be greater than zero, irrespective of any nonzero real values of x and y. However, if x=0 OR y=0 OR both x = y = 0, then we wouldn't be able to say that the given expression is greater than 0. The two fact statements, provide some idea about both x and y, both they don't guide us to the conclusion as to whether both x and y are nonzero values or not. Hence, we can't conclude even after using the 2 fact statements. For the same problem,imagine 2 fact statements like this : 1. x>0 2. xy<0. From F.S 1, all we know is that x is a nonzero(positive) number. However, y could still be zero. From F.S 2, we know that both x AND y are nonzero numbers, thus, Sufficient. You could also visualize the given problem as this: \(x^2\) and \(y^2\) are both positive quantities(assuming x and y are nonzero numbers). Thus, ADDING two positive numbers will always be greater than the DIFFERENCE of the same two positive numbers. Thus, what the given expression asks, is invariably ALWAYS true, except for the one case where x=0 OR y=0 OR x = y = 0.
_________________
Originally posted by mau5 on 06 Jun 2013, 00:25.
Last edited by mau5 on 06 Jun 2013, 02:42, edited 1 time in total.



VP
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1020
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
06 Jun 2013, 01:33
WholeLottaLove wrote: Could someone post a step by step explanation? This is an interesting problem but I am having some trouble figuring it out!
Thanks! The easiest way to solve this is by picking numbers Is \(x^2 + y^2 > x^2  y^2\)? The left term will always be \(\geq{0}\) because is the sum of two \(\geq{0}\) numbers, so we can safely rewrite it as: \(x^2 + y^2 > x^2  y^2\), here x^2, and y^2 can be seen as \(number\geq{0}\), so is \((num_1\geq{0})+(num_2\geq{0})>(num_1\geq{0})(num_2\geq{0})\) Even though this seems to be true, it does not hold true if \(y=0\), \(num_2=0\) for example So in this case we have \(x^2=x^2\), and since both statement do not exclude this possibility (1) x > y (2) x > 0 the correct answer is E
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason Tips and tricks: Inequalities , Mixture  Review: MGMAT workshop Strategy: SmartGMAT v1.0  Questions: Verbal challenge SC III CR New SC set out !! , My QuantRules for Posting in the Verbal Forum  Rules for Posting in the Quant Forum[/size][/color][/b]



Intern
Joined: 24 May 2013
Posts: 18
Location: United Kingdom
WE: Project Management (Real Estate)

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
06 Jun 2013, 02:14
Ans is E This is how I solved... \(x^2 + y^2\)> \(x^2  y^2\) given simply say squaring on both sides and solving gives us Is XY > 0 ? i.e do X and Y have same signs Stmt 1 Not Sufficient As X > Y Does not provide sufficient the information on the signs, they may be of the may sign or may be not. Stmt 2 Not sufficient As X > 0 , Y can be + ve or ve Combined Stmt 1 & 2 , still Y can be + ve or ve. Therefore Ans E.
_________________
Correct me If I'm wrong !! looking for valuable inputs



Math Expert
Joined: 02 Sep 2009
Posts: 58311

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
06 Jun 2013, 02:41
Manhnip wrote: Is x^2 + y^2 > x^2  y^2?
(1) x > y (2) x > 0
Ans is E
This is how I solved...
\(x^2 + y^2\)> \(x^2  y^2\) given simply say squaring on both sides and solving gives us Is XY > 0 ? i.e do X and Y have same signs
Stmt 1 Not Sufficient As X > Y Does not provide sufficient the information on the signs, they may be of the may sign or may be not.
Stmt 2 Not sufficient As X > 0 , Y can be + ve or ve
Combined Stmt 1 & 2 , still Y can be + ve or ve.
Therefore Ans E. That's not correct. If you square, the questions becomes: is \(x^2y^2>0\)? Now, this holds true if \(xy\neq{0}\). But even when we consider the statements together we cannot say whether y=0 or not. Therefore the answer is E. Similar questions to practice: isxyxy123108.htmlifayzbisyayb82673.htmlisxy146991.htmlisxyxy1xy2xy132654.htmlisxyxy137050.htmlisxyxz1yz2x86132.htmlHope it helps.
_________________



Intern
Joined: 24 May 2013
Posts: 18
Location: United Kingdom
WE: Project Management (Real Estate)

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
06 Jun 2013, 02:48
Thanks Bunuel for correcting me, I learned the trick of squaring of mods from one of your posts I took Square root of the \(x^2y^2>0\) Can't we take square root ??? please explain if we cannot.
_________________
Correct me If I'm wrong !! looking for valuable inputs



Math Expert
Joined: 02 Sep 2009
Posts: 58311

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
06 Jun 2013, 02:50
Manhnip wrote: Thanks Bunuel for correcting me, I learned the trick of squaring of mods from one of your posts
I took Square root of the \(x^2y^2>0\)
Can't we take square root ??? please explain if we cannot. We can, but \(\sqrt{x^2}=x\), not x. So, \(\sqrt{x^2y^2}=xy\): is \(x^2y^2>0\)? > is \(xy>0\)? Hope it's clear.
_________________



Senior Manager
Joined: 13 May 2013
Posts: 406

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
23 Jul 2013, 15:11
I thought we can only square both inequalities only if we know that both sides are positive (for example, what if x^2  y^2 =2^2  5^2 = 19)? Thanks! Bunuel wrote: Manhnip wrote: Is x^2 + y^2 > x^2  y^2?
(1) x > y (2) x > 0
Ans is E
This is how I solved...
\(x^2 + y^2\)> \(x^2  y^2\) given simply say squaring on both sides and solving gives us Is XY > 0 ? i.e do X and Y have same signs
Stmt 1 Not Sufficient As X > Y Does not provide sufficient the information on the signs, they may be of the may sign or may be not.
Stmt 2 Not sufficient As X > 0 , Y can be + ve or ve
Combined Stmt 1 & 2 , still Y can be + ve or ve.
Therefore Ans E. That's not correct. If you square, the questions becomes: is \(x^2y^2>0\)? Now, this holds true if \(xy\neq{0}\). But even when we consider the statements together we cannot say whether y=0 or not. Therefore the answer is E. Similar questions to practice: isxyxy123108.htmlifayzbisyayb82673.htmlisxy146991.htmlisxyxy1xy2xy132654.htmlisxyxy137050.htmlisxyxz1yz2x86132.htmlHope it helps.



Math Expert
Joined: 02 Sep 2009
Posts: 58311

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
23 Jul 2013, 15:18
WholeLottaLove wrote: I thought we can only square both inequalities only if we know that both sides are positive (for example, what if x^2  y^2 =2^2  5^2 = 19)? Thanks! Bunuel wrote: Manhnip wrote: Is x^2 + y^2 > x^2  y^2?
(1) x > y (2) x > 0
Ans is E
This is how I solved...
\(x^2 + y^2\)> \(x^2  y^2\) given simply say squaring on both sides and solving gives us Is XY > 0 ? i.e do X and Y have same signs
Stmt 1 Not Sufficient As X > Y Does not provide sufficient the information on the signs, they may be of the may sign or may be not.
Stmt 2 Not sufficient As X > 0 , Y can be + ve or ve
Combined Stmt 1 & 2 , still Y can be + ve or ve.
Therefore Ans E. That's not correct. If you square, the questions becomes: is \(x^2y^2>0\)? Now, this holds true if \(xy\neq{0}\). But even when we consider the statements together we cannot say whether y=0 or not. Therefore the answer is E. Similar questions to practice: isxyxy123108.htmlifayzbisyayb82673.htmlisxy146991.htmlisxyxy1xy2xy132654.htmlisxyxy137050.htmlisxyxz1yz2x86132.htmlHope it helps. We can square an inequality if both sides are nonnegative. ADDING/SUBTRACTING INEQUALITIES: You can only add inequalities when their signs are in the same direction:If \(a>b\) and \(c>d\) (signs in same direction: \(>\) and \(>\)) > \(a+c>b+d\). Example: \(3<4\) and \(2<5\) > \(3+2<4+5\). You can only apply subtraction when their signs are in the opposite directions:If \(a>b\) and \(c<d\) (signs in opposite direction: \(>\) and \(<\)) > \(ac>bd\) (take the sign of the inequality you subtract from). Example: \(3<4\) and \(5>1\) > \(35<41\). RAISING INEQUALITIES TO EVEN/ODD POWER: A. We can raise both parts of an inequality to an even power if we know that both parts of an inequality are nonnegative (the same for taking an even root of both sides of an inequality).For example: \(2<4\) > we can square both sides and write: \(2^2<4^2\); \(0\leq{x}<{y}\) > we can square both sides and write: \(x^2<y^2\); But if either of side is negative then raising to even power doesn't always work. For example: \(1>2\) if we square we'll get \(1>4\) which is not right. So if given that \(x>y\) then we can not square both sides and write \(x^2>y^2\) if we are not certain that both \(x\) and \(y\) are nonnegative. B. We can always raise both parts of an inequality to an odd power (the same for taking an odd root of both sides of an inequality).For example: \(2<1\) > we can raise both sides to third power and write: \(2^3=8<1=1^3\) or \(5<1\) > \(5^2=125<1=1^3\); \(x<y\) > we can raise both sides to third power and write: \(x^3<y^3\). For multiplication check here: helpwithaddsubtractmultdividmultipleinequalities155290.html#p1242652THEORY ON INEQUALITIES: x24x94661.html#p731476inequalitiestrick91482.htmldatasuffinequalities109078.htmlrangeforvariablexinagiveninequality109468.htmleverythingislessthanzero108884.htmlgraphicapproachtoproblemswithinequalities68037.htmlinequationsinequalitiespart154664.htmlinequationsinequalitiespart154738.htmlQUESTIONS: All DS Inequalities Problems to practice: search.php?search_id=tag&tag_id=184All PS Inequalities Problems to practice: search.php?search_id=tag&tag_id=189700+ Inequalities problems: inequalityandabsolutevaluequestionsfrommycollection86939.htmlHope it helps.
_________________



Intern
Joined: 01 Dec 2011
Posts: 1

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
24 Jul 2013, 14:08
Odd man Out.. My answer is A. The question boils down to is XY>0? 1) x>y => xy>0 It does mean both are positive and hence XY>0.  Sufficient
2) X> 0 => we dont know any thing about Y and hence IN Sufficient
please let me know what I am missing here..



Math Expert
Joined: 02 Sep 2009
Posts: 58311

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
24 Jul 2013, 14:24
gsgunturu wrote: Odd man Out.. My answer is A. The question boils down to is XY>0? 1) x>y => xy>0 It does mean both are positive and hence XY>0.  Sufficient
2) X> 0 => we dont know any thing about Y and hence IN Sufficient
please let me know what I am missing here.. Please read the thread. 1. The question boils down to: is x^2y^2>0, not xy>0. 2. x>y does not mean that both are positive. Consider x=1>y=1 or x=1>y=0 or x=1>y=2. Hope it helps.
_________________



Manager
Joined: 10 Aug 2015
Posts: 103

Re: Is x^2+y^2 > x^2y^2?
[#permalink]
Show Tags
24 Sep 2015, 01:53
Bunuel wrote: Is x^2+y^2 > x^2y^2?
(1) x > y (2) x > 0
Kudos for a correct solution. Solution : x^2+y^2 > x^2y^2 is always true except for x=y=0. Statement1 : x != y. Sufficient Statement2 : x != 0. Sufficient Option D



NonHuman User
Joined: 09 Sep 2013
Posts: 13109

Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
Show Tags
01 Jul 2019, 05:14
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: Is x^2 + y^2 > x^2  y^2?
[#permalink]
01 Jul 2019, 05:14






