Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 29 May 2017, 09:32

# Today:

Memorial Day - GMAT Club Tests are Open without Subscription

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

### Show Tags

23 Apr 2012, 05:12
7
This post was
BOOKMARKED
00:00

Difficulty:

75% (hard)

Question Stats:

50% (02:20) correct 50% (01:26) wrong based on 235 sessions

### HideShow timer Statistics

John purchased large bottles of water for $2 each and small bottles of water for$1.50 each. What percent of the bottles purchased were small bottles?

(1) John spent $33 on the bottles of water (2) The average price of bottles purchased was$1.65
[Reveal] Spoiler: OA
Math Expert
Joined: 02 Sep 2009
Posts: 39051
Followers: 7755

Kudos [?]: 106551 [0], given: 11628

Re: John purchased large bottles of water for $2 each and small [#permalink] ### Show Tags 23 Apr 2012, 05:29 Expert's post 1 This post was BOOKMARKED John purchased large bottles of water for$2 each and small bottles of water for $1.50 each. What percent of the bottles purchased were small bottles? Say John purchased x large bottles and y small bottles. (1) John spent$33 on the bottles of water --> $$2x+1.5y=33$$ --> $$4x+3y=66$$. Several integer solutions possible to satisfy this equation, for example $$x=15$$ and $$y=2$$ OR $$x=12$$ and $$y=6$$. Not sufficient.

(2) The average price of bottles purchased was $1.65 --> $$\frac{2x+1.5y}{x+y}=1.65$$ --> $$2x+1.5y=1.65x+1.65y$$ --> $$0.35x=0.15y$$ --> $$\frac{y}{x}=\frac{35}{15}$$, we have the ratio, which is sufficient to get the percentage. Just to illustrate $$\frac{y}{x+y}=\frac{35}{15+35}=\frac{70}{100}$$. Answer: B. _________________ Manager Joined: 28 Jul 2011 Posts: 238 Followers: 4 Kudos [?]: 131 [0], given: 16 Re: John purchased large bottles of water for$2 each and small [#permalink]

### Show Tags

27 Apr 2012, 06:10
1
This post was
BOOKMARKED
got B

(A)

2(l) + 1.5(s) = 33

not sufficient

(B)

[2(l) + 1.5(s)] / (l+s) = 1.65

2l + 1.5s = 1.65 (l+s)

2l - 1.65l = 1.65s - 1.5s

0.35(l) = 0.15 (s)

35/15 = s/l

% of small bottles

=35/ (35+15)*100
= 70%

sufficient

- bookmarking for future reference
Director
Joined: 24 Aug 2009
Posts: 504
Schools: Harvard, Columbia, Stern, Booth, LSB,
Followers: 19

Kudos [?]: 737 [1] , given: 276

Re: John purchased large bottles of water for $2 each and small [#permalink] ### Show Tags 11 Sep 2012, 07:16 1 This post received KUDOS Bunuel wrote: John purchased large bottles of water for$2 each and small bottles of water for $1.50 each. What percent of the bottles purchased were small bottles? Say John purchased x large bottles and y small bottles. (1) John spent$33 on the bottles of water --> $$2x+1.5y=33$$ --> $$4x+3y=66$$. Several integer solutions possible to satisfy this equation, for example $$x=15$$ and $$y=3$$ OR $$x=12$$ and $$y=6$$. Not sufficient.

(2) The average price of bottles purchased was $1.65 --> $$\frac{2x+1.5y}{x+y}=1.65$$ --> $$2x+1.5y=1.65x+1.65y$$ --> $$0.35x=0.15y$$ --> $$\frac{y}{x}=\frac{35}{15}$$, we have the ratio, which is sufficient to get the percentage. Just to illustrate $$\frac{y}{x+y}=\frac{35}{15+35}=\frac{70}{100}$$. Answer: B. Hi Bunuel, There is small error in one of the calculations. $$x=15$$ and $$y=3$$ should be $$x=15$$ and $$y=2$$ Kindly correct me if i am wrong. _________________ If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS. Kudos always maximizes GMATCLUB worth -Game Theory If you have any question regarding my post, kindly pm me or else I won't be able to reply Math Expert Joined: 02 Sep 2009 Posts: 39051 Followers: 7755 Kudos [?]: 106551 [0], given: 11628 Re: John purchased large bottles of water for$2 each and small [#permalink]

### Show Tags

11 Sep 2012, 08:38
fameatop wrote:
Bunuel wrote:
John purchased large bottles of water for $2 each and small bottles of water for$1.50 each. What percent of the bottles purchased were small bottles?

Say John purchased x large bottles and y small bottles.

(1) John spent $33 on the bottles of water --> $$2x+1.5y=33$$ --> $$4x+3y=66$$. Several integer solutions possible to satisfy this equation, for example $$x=15$$ and $$y=3$$ OR $$x=12$$ and $$y=6$$. Not sufficient. (2) The average price of bottles purchased was$1.65 --> $$\frac{2x+1.5y}{x+y}=1.65$$ --> $$2x+1.5y=1.65x+1.65y$$ --> $$0.35x=0.15y$$ --> $$\frac{y}{x}=\frac{35}{15}$$, we have the ratio, which is sufficient to get the percentage.

Just to illustrate $$\frac{y}{x+y}=\frac{35}{15+35}=\frac{70}{100}$$.

Hi Bunuel,

There is small error in one of the calculations.
$$x=15$$ and $$y=3$$
should be
$$x=15$$ and $$y=2$$

Kindly correct me if i am wrong.

Typo edited. Thank you. +1.
_________________
Intern
Status: Life begins at the End of your Comfort Zone
Joined: 31 Jul 2011
Posts: 47
Location: Tajikistan
Concentration: General Management, Technology
GPA: 3.86
Followers: 2

Kudos [?]: 29 [0], given: 4

Re: John purchased large bottles of water for $2 each and small [#permalink] ### Show Tags 11 Sep 2012, 09:43 Let x be the number of large bottles of water and y be the number of small bottles of water, from the question stem we get: 2*x+1.5*y=33, thus 1 is INSUFFICIENT. Mowing to 2 condition: (2*x+1.5*y)/(x+y) = 1.65 ------>>>> 2x+1.5y = 1.65x+1.65y, from here we easily get that 7x=3y, OR x = 3y/7 now we now x we can easily find the ratio of y in total of bottles: y/(y+3y/7) = 7/10 or 70% Please correct me, if I went awry. Actually we do not need the solution, as it is data sufficiency so 2 is SUFFICIENT dzodzo85 wrote: John purchased large bottles of water for$2 each and small bottles of water for $1.50 each. What percent of the bottles purchased were small bottles? (1) John spent$33 on the bottles of water
(2) The average price of bottles purchased was $1.65 _________________ God loves the steadfast. Director Joined: 22 Mar 2011 Posts: 612 WE: Science (Education) Followers: 101 Kudos [?]: 948 [0], given: 43 Re: John purchased large bottles of water for$2 each and small [#permalink]

### Show Tags

11 Sep 2012, 14:00
dzodzo85 wrote:
John purchased large bottles of water for $2 each and small bottles of water for$1.50 each. What percent of the bottles purchased were small bottles?

(1) John spent $33 on the bottles of water (2) The average price of bottles purchased was$1.65

Dealing with Statement (2): remember weighted average (also used when dealing with mixture problems).

If we have $$N_1$$ numbers with average $$A_1$$, and $$N_2$$ numbers with average $$A_2$$, the final average being A, then the differences between the final average and the initial averages are inversely proportional to the two numbers of numbers (assume $$A_1>A_2$$):

$$(A_1-A)N_1=(A-A_2)N_2$$ or $$\frac{A_1-A}{A-A_2}=\frac{N_2}{N_1}$$.

This follows from the equality $$\frac{N_1A_1+N_2A_2}{N_1+N_2}=A.$$

In our case we know $$A, A_1,A_2$$ so we can find the ratio $$\frac{N_2}{N_1}$$ and then, obviously $$\frac{N_2}{N_1+N_2}$$.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15518
Followers: 651

Kudos [?]: 210 [0], given: 0

### Show Tags

12 Jul 2015, 08:59
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
CEO
Joined: 17 Jul 2014
Posts: 2509
Location: United States (IL)
Concentration: Finance, Economics
Schools: Stanford '19 (D)
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
Followers: 26

Kudos [?]: 345 [0], given: 169

### Show Tags

19 Jun 2016, 04:03
dzodzo85 wrote:
John purchased large bottles of water for $2 each and small bottles of water for$1.50 each. What percent of the bottles purchased were small bottles?

(1) John spent $33 on the bottles of water (2) The average price of bottles purchased was$1.65

(1)Not suff.
(2) I will use weighted avg. method here
W1/W2=(A2-Avg.)/(Avg.-A2)
W1=No. of large bottles
W2=No. of large bottles
A1=2
A2=1.5
Avg.=1.65
W1/W2=3/7
%age of small bottles= 7/(3+7)------>7/10----70%
Ans B