GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 14 Oct 2019, 07:09 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  Let x, y, and z be positive integers such that y is a multiple of x.

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 58310
Let x, y, and z be positive integers such that y is a multiple of x.  [#permalink]

Show Tags 00:00

Difficulty:   25% (medium)

Question Stats: 74% (01:26) correct 26% (01:47) wrong based on 80 sessions

HideShow timer Statistics

Let x, y, and z be positive integers such that y is a multiple of x. Is y + z a multiple of x?

(1) z is a multiple of y.
(2) x is a prime.

_________________
Current Student D
Joined: 12 Aug 2015
Posts: 2573
Schools: Boston U '20 (M)
GRE 1: Q169 V154 Re: Let x, y, and z be positive integers such that y is a multiple of x.  [#permalink]

Show Tags

1
1
Here is my solution to this one.
Given that y is a multiple of x=> y=kx
We need to check if y+z is a multiple of x.
Since y is already a multiple of x => y+z will be a multiple of x only if z is a multiple of x.
Else it wont be.

RULE -> Multiple +Multiple = Multiple
Multiple +Non Multiple = Non Multiple

Statement 1-->
Z=yk'=> xk*k'
Hence z is a multiple of x
Hence y+z will be multiple of x
Hence sufficient

Statement 2-->
No clue of z
Hence not sufficient

Hence A

_________________
Manager  B
Joined: 03 Sep 2018
Posts: 171
Re: Let x, y, and z be positive integers such that y is a multiple of x.  [#permalink]

Show Tags

As per statement 1:$$z=yb$$
that implies $$y+yb=xm$$
that implies $$y(1+b)=xm$$,
hence $$y+z=xm$$.
_________________
Please consider giving Kudos if my post contained a helpful reply or question. Re: Let x, y, and z be positive integers such that y is a multiple of x.   [#permalink] 10 Apr 2019, 23:31
Display posts from previous: Sort by

Let x, y, and z be positive integers such that y is a multiple of x.

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  