GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 21 Sep 2018, 19:11

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

m and n are positive integers. If mn + 2m + n + 1 is even,

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

CEO
CEO
User avatar
D
Joined: 12 Sep 2015
Posts: 2872
Location: Canada
m and n are positive integers. If mn + 2m + n + 1 is even,  [#permalink]

Show Tags

New post 17 May 2018, 07:26
Top Contributor
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

60% (01:59) correct 40% (02:15) wrong based on 102 sessions

HideShow timer Statistics

m and n are positive integers. If \(mn + 2m + n + 1\) is even, which of the following MUST be true?

i) \((2n + m)^2\) is even
ii) \(n^2 + 2n – 11\) is even
iii) \(m^2 – 2mn + n^2\) is odd

A) ii only
B) ii and iii only
C) i and ii only
D) i and iii only
E) i, ii and iii

*kudos for all correct solutions

_________________

Brent Hanneson – GMATPrepNow.com
Image
Sign up for our free Question of the Day emails

PS Forum Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1214
Location: India
GPA: 3.82
GMAT ToolKit User Premium Member Reviews Badge
m and n are positive integers. If mn + 2m + n + 1 is even,  [#permalink]

Show Tags

New post 17 May 2018, 10:31
1
GMATPrepNow wrote:
m and n are positive integers. If \(mn + 2m + n + 1\) is even, which of the following MUST be true?

i) \((2n + m)^2\) is even
ii) \(n^2 + 2n – 11\) is even
iii) \(m^2 – 2mn + n^2\) is odd

A) ii only
B) ii and iii only
C) i and ii only
D) i and iii only
E) i, ii and iii

*kudos for all correct solutions


\(mn + 2m + n + 1=Even\)

\(=>mn+Even+n+Odd=Even\)

\(=> n(m+1)=Odd\). Hence \(n=Odd\) & \(m=Even\) because multiplication of two numbers is Odd only when both are Odd. So \(m+1=Odd =>m=Even\)

Now

i) \((2n + m)^2=>(Even+Even)^2=Even\) -----\(True\)

ii) \(n^2 + 2n – 11=Odd+Even-Odd=Even\) ------\(True\)

iii) \(m^2 – 2mn + n^2=Even-Even+Odd=Odd\) ------\(True\)

Option E
CEO
CEO
User avatar
D
Joined: 12 Sep 2015
Posts: 2872
Location: Canada
Re: m and n are positive integers. If mn + 2m + n + 1 is even,  [#permalink]

Show Tags

New post 19 May 2018, 06:31
Top Contributor
GMATPrepNow wrote:
m and n are positive integers. If \(mn + 2m + n + 1\) is even, which of the following MUST be true?

i) \((2n + m)^2\) is even
ii) \(n^2 + 2n – 11\) is even
iii) \(m^2 – 2mn + n^2\) is odd

A) ii only
B) ii and iii only
C) i and ii only
D) i and iii only
E) i, ii and iii

*kudos for all correct solutions


There are several ways to approach this question. Here's one approach:

First recognize that mn + 2m + n + 1 is ALMOST factorable. If the expression were mn + 2m + n + 2, then we COULD factor it.
Next, recognize that, if mn + 2m + n + 1 is even, then mn + 2m + n + 2 must be ODD
Now recognize that we can factor mn + 2m + n + 2 to get: mn + 2m + n + 2 = (m + 1)(n + 2)
So, if mn + 2m + n + 2 is ODD, then it must be true that (m + 1)(n + 2) is ODD

If (m + 1)(n + 2) is ODD, then we know that (m + 1) is ODD, AND (n + 2) is ODD
If (m + 1) is ODD, then m must be EVEN
If (n + 2) is ODD, then n must be ODD

Now check the 3 statements:
i) (2n + m)² is even.
(2n + m)² = [2(ODD) + EVEN)]²
= [EVEN + EVEN]²
= [EVEN]²
= EVEN
So, statement i is TRUE

ii) n² + 2n – 11 is even
n² + 2n – 11 = (ODD)² + 2(ODD) – ODD
= ODD + EVEN - ODD
= ODD - ODD
= EVEN
So, statement ii is TRUE

iii) m² – 2mn + n² is odd
m² – 2mn + n² = (EVEN)² – 2(EVEN)(ODD) + (ODD
= EVEN - EVEN + ODD
= EVEN + ODD
= ODD
So, statement iii is TRUE

Answer: E
IMPORTANT: Let's say you didn't see that mn + 2m + n + 2 factors nicely into (m + 1)(n + 2) [most students will NOT see that]
No problem. In the next solution, you'll see another way to handle this question.

Cheers,
Brent
_________________

Brent Hanneson – GMATPrepNow.com
Image
Sign up for our free Question of the Day emails

CEO
CEO
User avatar
D
Joined: 12 Sep 2015
Posts: 2872
Location: Canada
Re: m and n are positive integers. If mn + 2m + n + 1 is even,  [#permalink]

Show Tags

New post 19 May 2018, 06:32
Top Contributor
GMATPrepNow wrote:
m and n are positive integers. If \(mn + 2m + n + 1\) is even, which of the following MUST be true?

i) \((2n + m)^2\) is even
ii) \(n^2 + 2n – 11\) is even
iii) \(m^2 – 2mn + n^2\) is odd

A) ii only
B) ii and iii only
C) i and ii only
D) i and iii only
E) i, ii and iii

*kudos for all correct solutions


Here's a different solution:

Since m and n can each be either even or odd, there are 4 possible cases to consider:
    case a) m is EVEN and n is EVEN
    case b) m is ODD and n is EVEN
    case c) m is EVEN and n is ODD
    case d) m is ODD and n is ODD

Now let's test each case as we examine \(mn + 2m + n + 1\)
To make things super easy, let's plug in 0 as a nice EVEN number, and we'll plug in 1 as a nice ODD number.

case a) m is EVEN and n is EVEN
mn + 2m + n + 1 = (0)(0) + 2(0) + (0) + 1
= 1 (an ODD number)
We're told that mn + 2m + n + 1 is EVEN, so case a is NOT POSSIBLE

case b) m is ODD and n is EVEN
mn + 2m + n + 1 = (1)(0) + 2(1) + (0) + 1
= 3 (an ODD number)
We're told that mn + 2m + n + 1 is EVEN, so case b is NOT POSSIBLE

case c) m is EVEN and n is ODD
mn + 2m + n + 1 = (0)(1) + 2(0) + (1) + 1
= 2 (an EVEN number)
We're told that mn + 2m + n + 1 is EVEN, so case c IS POSSIBLE

case d) m is ODD and n is ODD
mn + 2m + n + 1 = (1)(1) + 2(1) + (1) + 1
= 5 (an ODD number)
We're told that mn + 2m + n + 1 is EVEN, so case d is NOT POSSIBLE

Since case c is the ONLY possible case, we know that m is EVEN and n is ODD

Now check the 3 statements (using the same strategy that we applied above):

i) (2n + m)² is even.
(2n + m)² = [2(ODD) + EVEN)]²
= [EVEN + EVEN]²
= [EVEN]²
= EVEN
So, statement i is TRUE


ii) n² + 2n – 11 is even
n² + 2n – 11 = (ODD)² + 2(ODD) – ODD
= ODD + EVEN - ODD
= ODD - ODD
= EVEN
So, statement ii is TRUE


iii) m² – 2mn + n² is odd
m² – 2mn + n² = (EVEN)² – 2(EVEN)(ODD) + (ODD
= EVEN - EVEN + ODD
= EVEN + ODD
= ODD
So, statement iii is TRUE

Answer: E

Cheers,
Brent
_________________

Brent Hanneson – GMATPrepNow.com
Image
Sign up for our free Question of the Day emails

Manager
Manager
User avatar
G
Joined: 07 Apr 2018
Posts: 108
Reviews Badge CAT Tests
Re: m and n are positive integers. If mn + 2m + n + 1 is even,  [#permalink]

Show Tags

New post 19 May 2018, 06:55
1
GMATPrepNow wrote:
m and n are positive integers. If \(mn + 2m + n + 1\) is even, which of the following MUST be true?

i) \((2n + m)^2\) is even
ii) \(n^2 + 2n – 11\) is even
iii) \(m^2 – 2mn + n^2\) is odd

A) ii only
B) ii and iii only
C) i and ii only
D) i and iii only
E) i, ii and iii

*kudos for all correct solutions


Given: m>0, n>0, mn + 2m + n + 1 = Even

Approach: We know that, e + e = e ; o + o = e
mn + 2m + n + 1 = Even
=> mn + n + 1 = Even - 2m = Even - Even = Even
=> mn + n + 1 = Even
or, mn + n = Even - 1= Even - odd = odd
=> mn + n = odd

For (mn + n) to be odd, n has to be odd.

1) (2n+m)^2 is even True because m is even.
So, (Even + Even )^2 = Even

2) n^2+2n–11 is even True
odd + Even - odd = odd - odd = Even

3) m^2–2mn+n^2 is odd True
( Even) ^2 - Even + (odd)^2 = Even - Even + odd = Even - odd = odd

Correct Answer= E
_________________

Please +1 kudos if my post/reply helps !!

Intern
Intern
avatar
B
Joined: 31 May 2018
Posts: 17
Location: United States
Concentration: Finance, Marketing
Re: m and n are positive integers. If mn + 2m + n + 1 is even,  [#permalink]

Show Tags

New post 28 Jun 2018, 00:44
1
GMATPrepNow wrote:
m and n are positive integers. If \(mn + 2m + n + 1\) is even, which of the following MUST be true?

i) \((2n + m)^2\) is even
ii) \(n^2 + 2n – 11\) is even
iii) \(m^2 – 2mn + n^2\) is odd

A) ii only
B) ii and iii only
C) i and ii only
D) i and iii only
E) i, ii and iii

*kudos for all correct solutions

since mn + 2m + n + 1 is even
{n(m+1) } + {2m + 1 } = even
odd odd
n(m+1) = odd
n = odd , m+1 = odd
m = even
i) (2n+m)^2 = (even + even)^2 = even
ii) ( n^2+2n–11) = ( odd^2 + even - odd ) = (odd - odd) = even
iii) m^2–2mn+n^2 = (even^2 - even + odd ) =(even + odd) = odd
so all options are correct
Re: m and n are positive integers. If mn + 2m + n + 1 is even, &nbs [#permalink] 28 Jun 2018, 00:44
Display posts from previous: Sort by

m and n are positive integers. If mn + 2m + n + 1 is even,

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.