Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

 It is currently 17 Jul 2019, 01:46

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# M02-31

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 56266
M02-31  [#permalink]

### Show Tags

16 Sep 2014, 00:18
11
00:00

Difficulty:

45% (medium)

Question Stats:

65% (01:53) correct 35% (02:06) wrong based on 256 sessions

### HideShow timer Statistics

If $$x$$ and $$y$$ represent digits of a positive two-digit number divisible by 3, is the two-digit number less than 50?

(1) Sum of the digits is a multiple of 18

(2) Product of the digits is a multiple of 9

_________________
Math Expert
Joined: 02 Sep 2009
Posts: 56266
Re M02-31  [#permalink]

### Show Tags

16 Sep 2014, 00:18
2
Official Solution:

Statement (1) by itself is sufficient. The only two digit number with the sum of its digits representing a multiple of 18 is 99. $$9 + 9 = 18$$.

Statement (2) by itself is insufficient. There are several possibilities. For example, 36: $$3 * 6 = 18$$, is a multiple of 9, and 99: $$9 * 9 = 81$$, is a multiple of 9 as well.

Answer: A
_________________
Manager
Joined: 11 Sep 2013
Posts: 141
Concentration: Finance, Finance
Re: M02-31  [#permalink]

### Show Tags

03 Dec 2014, 21:25
Hi, Bunuel

In exam how will I quickly get to the number 99 in statement 1? Please show me the process
Math Expert
Joined: 02 Sep 2009
Posts: 56266
Re: M02-31  [#permalink]

### Show Tags

04 Dec 2014, 04:50
Raihanuddin wrote:
Hi, Bunuel

In exam how will I quickly get to the number 99 in statement 1? Please show me the process

Let me ask a question: what other multiple of 18 can you get by adding two single-digit numbers (out of which one is non-zero)?
_________________
Manager
Joined: 11 Sep 2013
Posts: 141
Concentration: Finance, Finance
Re: M02-31  [#permalink]

### Show Tags

04 Dec 2014, 09:37
Ok got it thanks
Intern
Joined: 21 Dec 2015
Posts: 1
Re: M02-31  [#permalink]

### Show Tags

13 Jan 2016, 14:30
i am not sure i understand the question properly. does it mean the # will be greater than 50 or not or sum of two digits will be greater than 50 or not. If it is by # it self, 99 is greater than 50, but I think 42 works as well. 4+2=6 is multiple of 18 and 42 less than 50.
Math Expert
Joined: 02 Sep 2009
Posts: 56266
Re: M02-31  [#permalink]

### Show Tags

14 Jan 2016, 00:32
rtommy wrote:
i am not sure i understand the question properly. does it mean the # will be greater than 50 or not or sum of two digits will be greater than 50 or not. If it is by # it self, 99 is greater than 50, but I think 42 works as well. 4+2=6 is multiple of 18 and 42 less than 50.

6 is NOT a multiple of 18, it's a factor of 18.
_________________
Intern
Joined: 16 Jan 2018
Posts: 13
Re: M02-31  [#permalink]

### Show Tags

15 Aug 2018, 10:39
Bunuel wrote:
rtommy wrote:
i am not sure i understand the question properly. does it mean the # will be greater than 50 or not or sum of two digits will be greater than 50 or not. If it is by # it self, 99 is greater than 50, but I think 42 works as well. 4+2=6 is multiple of 18 and 42 less than 50.

6 is NOT a multiple of 18, it's a factor of 18.

Hi Bunuel

As always super helpful on your explanations

MY question is the following:

Assuming that 1 is a multiple of all integers, couldn't statement 1 also be interpreted as:
x+Y=1 X=1 Y=0 ->number is 10 (which is a 2 digit positive number and respects the premises)
Since there is no restriction of XorY being non zero, other than together must for a two digit integer, this option should be contemplated and therefore statement becomes invalid (an actually correct answer would be E)

What do you think?

Thank you very much,
Math Expert
Joined: 02 Sep 2009
Posts: 56266
Re: M02-31  [#permalink]

### Show Tags

15 Aug 2018, 13:48
bpegenaute wrote:
Bunuel wrote:
rtommy wrote:
i am not sure i understand the question properly. does it mean the # will be greater than 50 or not or sum of two digits will be greater than 50 or not. If it is by # it self, 99 is greater than 50, but I think 42 works as well. 4+2=6 is multiple of 18 and 42 less than 50.

6 is NOT a multiple of 18, it's a factor of 18.

Hi Bunuel

As always super helpful on your explanations

MY question is the following:

Assuming that 1 is a multiple of all integers, couldn't statement 1 also be interpreted as:
x+Y=1 X=1 Y=0 ->number is 10 (which is a 2 digit positive number and respects the premises)
Since there is no restriction of XorY being non zero, other than together must for a two digit integer, this option should be contemplated and therefore statement becomes invalid (an actually correct answer would be E)

What do you think?

Thank you very much,

1 is not a multiple of every integer, it's a FACTOR (a divisor) of every integer.
_________________
Intern
Joined: 04 May 2019
Posts: 1
Re: M02-31  [#permalink]

### Show Tags

22 May 2019, 23:58
Bunuel wrote:
If $$x$$ and $$y$$ represent digits of a positive two-digit number divisible by 3, is the two-digit number less than 50?

(1) Sum of the digits is a multiple of 18

(2) Product of the digits is a multiple of 9

Frankly, I dont see why "divisible by 3" is necessary here? .
We can make the question shorter and less confuse with new version of "If $$x$$ and $$y$$ represent digits of a positive two-digit, is the two-digit number less than 50?"
ISB School Moderator
Joined: 08 Dec 2013
Posts: 524
Location: India
Concentration: Nonprofit, Sustainability
GMAT 1: 630 Q47 V30
WE: Operations (Non-Profit and Government)
Re: M02-31  [#permalink]

### Show Tags

23 May 2019, 00:07
Bunuel wrote:
If $$x$$ and $$y$$ represent digits of a positive two-digit number divisible by 3, is the two-digit number less than 50?

(1) Sum of the digits is a multiple of 18

(2) Product of the digits is a multiple of 9

Statement 2 is easy, can be quickly negated.
Multiples of 9: 9, 18, 27

Case 1. 33 <50, 3*3=9
case 2. But 93 >50, 9*3=27

Insufficient.

Statement 1.
Multiples of 18: 18, 36...

two digits x and y can add up to form maximum 18, so it has to be 99 (Also divisible by 3)
So, number is >50. Sufficient.

A
_________________
Kindly drop a '+1 Kudos' if you find this post helpful.

GMAT Math Book

-I never wanted what I gave up
I never gave up what I wanted-
Re: M02-31   [#permalink] 23 May 2019, 00:07
Display posts from previous: Sort by

# M02-31

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

Moderators: chetan2u, Bunuel

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne