GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 13 Dec 2018, 16:47

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
• ### GMATbuster's Weekly GMAT Quant Quiz, Tomorrow, Saturday at 9 AM PST

December 14, 2018

December 14, 2018

09:00 AM PST

10:00 AM PST

10 Questions will be posted on the forum and we will post a reply in this Topic with a link to each question. There are prizes for the winners.
• ### The winning strategy for 700+ on the GMAT

December 13, 2018

December 13, 2018

08:00 AM PST

09:00 AM PST

What people who reach the high 700's do differently? We're going to share insights, tips and strategies from data we collected on over 50,000 students who used examPAL.

# M20-21

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 51185

### Show Tags

16 Sep 2014, 00:08
00:00

Difficulty:

25% (medium)

Question Stats:

78% (01:08) correct 22% (00:43) wrong based on 86 sessions

### HideShow timer Statistics

Is $$X^2Y^3Z^2 \gt 0$$ ?

(1) $$XY \gt 0$$

(2) $$YZ \lt 0$$

_________________
Math Expert
Joined: 02 Sep 2009
Posts: 51185

### Show Tags

16 Sep 2014, 00:08
Official Solution:

Statements (1) and (2) combined are insufficient. Consider:

$$X$$ is positive, $$Y$$ is positive, $$Z$$ is negative - the answer is "yes";

$$X$$ is negative, $$Y$$ is negative, $$Z$$ is positive - the answer is "no".

_________________
Intern
Joined: 20 Aug 2014
Posts: 5

### Show Tags

04 Jan 2015, 14:17
the equation can be simplified as : Is square(x*y).square(y*z) > 0 . If we combine both the equation we find that neither x, y,z are zero. And after , even if (x*y) or (y*z) is positive/negative , the overall equation will be always positive as it the square of two non zeros . Am i doing something wrong .. Can you please clarify ?
Math Expert
Joined: 02 Sep 2009
Posts: 51185

### Show Tags

05 Jan 2015, 04:50
jhasac wrote:
the equation can be simplified as : Is square(x*y).square(y*z) > 0 . If we combine both the equation we find that neither x, y,z are zero. And after , even if (x*y) or (y*z) is positive/negative , the overall equation will be always positive as it the square of two non zeros . Am i doing something wrong .. Can you please clarify ?

The point is that x^2*y^3*z^2 does NOT equal to (xy)^2*(yz)^2:

(xy)^2*(yz)^2 = x^2*y^4*z^2, not x^2*y^3*z^2.
_________________
Intern
Joined: 04 Mar 2016
Posts: 45
Location: India

### Show Tags

16 Dec 2016, 19:40
I have a query

Equation breaks down as xy.xy.yz.

From 1 we know xy is positive. We don't know yz so NS

From 2 we know yz is negatve. We don't know xy so NS

COMBINING WE KNOW XY IS POSITIVE AND YZ IS NEGATIVE. SO POSITIVE X POSITIVE X NEGATIVE = NEGATIVE. We have answer as NO.

SHUDNT IT BE C ??
Math Expert
Joined: 02 Sep 2009
Posts: 51185

### Show Tags

17 Dec 2016, 02:56
Omkar.kamat wrote:
I have a query

Equation breaks down as xy.xy.yz.

From 1 we know xy is positive. We don't know yz so NS

From 2 we know yz is negatve. We don't know xy so NS

COMBINING WE KNOW XY IS POSITIVE AND YZ IS NEGATIVE. SO POSITIVE X POSITIVE X NEGATIVE = NEGATIVE. We have answer as NO.

SHUDNT IT BE C ??

$$xy*xy*yz=x^2y^3z$$. You are missing one z. It's $$X^2Y^3Z^2$$
_________________
Manager
Joined: 12 Jun 2016
Posts: 216
Location: India
WE: Sales (Telecommunications)

### Show Tags

12 Sep 2017, 21:31
1
Here's how I solved this.

STEM:

Is $$X^2Y^3Z^2 \gt 0$$

Since $$X^2$$ and $$Z^2$$ will ALWAYS be positive irrespective of their value, the stem can be Paraphrased as is - $$Y^3 \gt 0$$. In plan english, What is the sign of Y?

S1:

$$XY \gt 0$$

Possible when both X&Y are positive or Both X&Y are negative. Meaning X can be either +ve or Negative. Insuff

S2:

$$YZ \lt 0$$

Same reasoning as S1. X could be +ve or -ve. Insuff

S1+S2:

Combining Both statements we get $$XY \gt YX$$ => $$Y(X-Z) \gt 0$$. This is still not enough to tell us tell us the exact sign of Y and Insuff

S1 Insuff. S2 Insuff. S1+S2 insuff. Final answer is E
_________________

My Best is yet to come!

Retired Moderator
Joined: 26 Nov 2012
Posts: 591

### Show Tags

04 Oct 2017, 23:27
1
Buneul,

Kindly check on the below, we need to check whether $$x^2$$ $$y^3$$ $$z^2$$ > 0 ?

Stat 1:
XY > 0 then we get two cases : case a) both positive and b) both negative

case a) When both +ve we get $$x^2$$ $$y^3$$ $$z^2$$ as + + + > 0 (yes)
case b) when both -ve we get $$x^2$$ $$y^3$$ $$z^2$$ as + - + < 0 (no)

Stat 2:
YZ < 0 then we get cases a) (y) +Ve and other -ve (z) and b) -ve (y)and other +ve(z)

case a) When y = +Ve and z = -ve we get $$x^2$$ $$y^3$$ $$z^2$$ as + + + > 0 (yes)
case b) when y = -ve and z = +Ve we get $$x^2$$ $$y^3$$ $$z^2$$ as + - + < 0 (no)

But in both statements when y is -ve then we get $$x^2$$ $$y^3$$ $$z^2$$ < 0... right ? why this is not considered in official solution..plz let me know.
Math Expert
Joined: 02 Sep 2009
Posts: 51185

### Show Tags

04 Oct 2017, 23:45
msk0657 wrote:
Buneul,

Kindly check on the below, we need to check whether $$x^2$$ $$y^3$$ $$z^2$$ > 0 ?

Stat 1:
XY > 0 then we get two cases : case a) both positive and b) both negative

case a) When both +ve we get $$x^2$$ $$y^3$$ $$z^2$$ as + + + > 0 (yes)
case b) when both -ve we get $$x^2$$ $$y^3$$ $$z^2$$ as + - + < 0 (no)

Stat 2:
YZ < 0 then we get cases a) (y) +Ve and other -ve (z) and b) -ve (y)and other +ve(z)

case a) When y = +Ve and z = -ve we get $$x^2$$ $$y^3$$ $$z^2$$ as + + + > 0 (yes)
case b) when y = -ve and z = +Ve we get $$x^2$$ $$y^3$$ $$z^2$$ as + - + < 0 (no)

But in both statements when y is -ve then we get $$x^2$$ $$y^3$$ $$z^2$$ < 0... right ? why this is not considered in official solution..plz let me know.

What are you implying?

For (1)+(2) x and y have the same sign and y and z have the opposite sign:

x > 0, y > 0 and z < 0, then x^2*y^3*z^2 = positive*positive*positive > 0;
x < 0, y < 0 and z > 0, then x^2*y^3*z^2 = positive*negative*positive > 0.
_________________
Intern
Joined: 19 Feb 2018
Posts: 24

### Show Tags

20 Aug 2018, 15:50
Bunuel wrote:
Is $$X^2Y^3Z^2 \gt 0$$ ?

(1) $$XY \gt 0$$

(2) $$YZ \lt 0$$

for $$X^2Y^3Z^2 \gt 0$$ to be true one has to find whether $$y$$ is positive or not, as $$x^2$$ & $$z^2$$ will always remain positive. Both statements (1) and (2) are insufficient to tell whether y is positive or negative; hence answer is E
Re: M20-21 &nbs [#permalink] 20 Aug 2018, 15:50
Display posts from previous: Sort by

# M20-21

Moderators: chetan2u, Bunuel

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.