ttaiwo wrote:

Hi Bunuel,

I too have exactly the same question as the previous person...I went through the links provided and still cannot understand why in statement 2, x is not either greater than 0 or greater than 1. I then got confused as to how you got to the answer being x= (-1).

Would really appreciate a breakdown of the above queries please.

Thanks,

Tosin

This is explained in detail in the links provided.

x > 0 or x > 1 doe not make any sense. Is x > 0? So, could it be 0.5? Or is x > 1?

\(x(x-1) \gt 0\) --> x and x - 1 have the same sign.

x > 0 and x - 1 > 0 --> x > 0 and x > 1. Simultaneously to be true x > 1 has to be true.

x < 0 and x - 1 < 0 --> x < 0 and x < 1. Simultaneously to be true x < 0 has to be true.

So, \(x(x-1) \gt 0\) is true for x < 0 and x > 1.