Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Think a 100% GMAT Verbal score is out of your reach? Target Test Prep will make you think again! Our course uses techniques such as topical study and spaced repetition to maximize knowledge retention and make studying simple and fun.
GMAT Club 12 Days of Christmas is a 4th Annual GMAT Club Winter Competition based on solving questions. This is the Winter GMAT competition on GMAT Club with an amazing opportunity to win over $40,000 worth of prizes!
Join Manhattan Prep instructor Whitney Garner for a fun—and thorough—review of logic-based (non-math) problems, with a particular emphasis on Data Sufficiency and Two-Parts.
Here is the essential guide to securing scholarships as an MBA student! In this video, we explore the various types of scholarships available, including need-based and merit-based options.
Still interested in this question? Check out the "Best Topics" block below for a better discussion on this exact question, as well as several more related questions.
There are 100 students in a class. What is the probability that any two have birthdays on the same day.
Just to make this a fair question, you should eliminate Feb 29th for simplicity. (or you can add it in, but it will make the problem unncessarily complex because the assumption that every day is equally likely to be someones birthday will no longer be true).
Second, the wording of the question is a tad ambiguous. Do you want the probability that EXACTLY two have the same birthday, or AT LEAST TWO have the same birthday, or is the question, if you are to pick two people at random from a sample of 100, what is the probability that they have the same birthday? All of the interpretations have much different answers.
Let us consider the case EXACTLY TWO PEOPLE
Sanity check says that the probability for exactly two out of 100 students to have the same birthday should be very small.
Total outcomes: there are 100 students; each may have a birthday in one of 365 days. = 365^100
Favorable... Hmm...
any 2 of 100 = 100C2=4950
have 365 days to be born=365*4590
in order to provide a condition that EXACTLY two
the third person has 364 days
the fourth has 363
....................
the hundredth 267
yupp u are right. I got to be carefull. What I meant was ...
What is the probability that out of the hundred students ANY TWO have birthday on the same day .... ( or in other words it is = 1-P)
Where P is the probabiltiy that none of the students have birthday on the same day.. I hope I am clear..
Okay.
This would be more interesting if the number of people were smaller, say 20 to 25 people. But here goes...
In order to find the probability of ANY TWO (which to me means AT LEAST TWO), we best find the probability that NOBODY has the same birthday (let's call this P), then subtract from one.
Say we pick any one person, The probability that that next person will not have the same birthday is 364/365, then next 363/365, and so on until we get to 266/365.
So P = (1)(364/365)(363/365)....(266/365) = (364!/265!)/(365^99)
You would need a computer to calculate this, but if you think about it, this number will end up being very small. (we are multiplying a bunch of numbers less than 1 together 99 times)
So my answer at an interview would be: "It is almost certain that at least two people will have the same birthday in a group of 100"
Numerical answer using computer is P = 3 x 10^-7
and 1 - P = .9999997
Interesting result: If there were only 23 people, the answer would be
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.