GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Nov 2018, 21:14

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
  • How to QUICKLY Solve GMAT Questions - GMAT Club Chat

     November 20, 2018

     November 20, 2018

     09:00 AM PST

     10:00 AM PST

    The reward for signing up with the registration form and attending the chat is: 6 free examPAL quizzes to practice your new skills after the chat.
  • The winning strategy for 700+ on the GMAT

     November 20, 2018

     November 20, 2018

     06:00 PM EST

     07:00 PM EST

    What people who reach the high 700's do differently? We're going to share insights, tips and strategies from data we collected on over 50,000 students who used examPAL.

The ages of three friends are prime numbers. The sum of the ages is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 29 Sep 2008
Posts: 96
The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 10:04
6
00:00
A
B
C
D
E

Difficulty:

  85% (hard)

Question Stats:

61% (03:10) correct 39% (02:38) wrong based on 177 sessions

HideShow timer Statistics

The ages of three friends are prime numbers. The sum of the ages is less than 51. If the ages are in Arithmetic Progression (AP) and if at least one of the ages is greater than 10, what is the difference between the maximum possible median and minimum possible median of the ages of the three friends?

(A) 0
(B) 1
(C) 13
(D) 6
(E) 8
Most Helpful Expert Reply
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8552
Location: Pune, India
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 22 Oct 2010, 05:07
4
1
When you want to take 3 numbers in AP, always take them to be a-d, a, a+d (as Gurpreet did above)
Note: On similar lines, 4 numbers in AP should be taken as a-3d, a-d, a+d, a+3d
This is done so that when the numbers are added, we can get rid of d.

If a-d + a + a+d < 51, we get a < 17

To get Minimum Median: Take smallest possible values. We need to take at least one number > 10 so take the greatest number as 11. Can you make an AP of prime numbers where 11 is the greatest number? Sure, 3, 7 and 11.
Note: When looking for prime numbers, consider only those numbers that end with 1/3/7/9

To get Maximum Median, median being 'a' that we assumed above, a <17 so the greatest median possible is 13. Now confirm whether you can you make an AP of primes with 13 as the middle number. I got one- 7, 13, 19. That's enough.

The difference between the maximum and minimum median will be 13 - 7 = 6
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

GMAT self-study has never been more personalized or more fun. Try ORION Free!

General Discussion
SVP
SVP
User avatar
Status: Three Down.
Joined: 09 Jun 2010
Posts: 1855
Concentration: General Management, Nonprofit
GMAT ToolKit User
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 10:29
The largest possible set of primes that fulfills this is 11, 13 and 17, since they have a common difference of 2 and they are prime numbers. So the largest possible median has to be 13.

Let's look at the smallest possible set of primes.

2, 3, 5 - Not in AP
3, 5, 7 - Not in AP
5, 7, 11 - AP!
7, 11, 13 - AP with common difference -2. 13 - 2 = 11, 11 - 4 = 7. But the median here is bigger than the median in the previous case. Hence we can rule this out.

The smallest possible set of primes that fulfills this is 5, 7 and 11. So this case, the median is 7 and hence the difference is 13 - 7 = 6

Is the answer D?
Intern
Intern
User avatar
Joined: 20 Jul 2010
Posts: 43
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post Updated on: 21 Oct 2010, 10:51
2
1
Even i do agree with ans: A

Here is my version of explanation:

Let the 3 prime numbers be: x, y, z

Given: x + y + z = 51
Assume: x is smallest prime number among 3 numbers

Since these 3 are in Arithmetic progression:
y = x + d
z = x + 2d
==> x + y + z = x + (x + d) + (x + 2d) = 51
==> x + d = 17

Now, valid combinations are:




S.Nox d y z Comments
13 14 17 31 Valid solution
211 6 17 23 Valid solution
317 0 17 17 Valid solution


From above table three valid solutions (1) (2) & (3), The maximum median is: 17, The minimum median is:17
Hence, the difference is zero.

Cheers!
Ravi
_________________

Cheers!
Ravi


If you like my post, consider giving me some KUDOS !!!


Originally posted by nravi549 on 21 Oct 2010, 10:49.
Last edited by nravi549 on 21 Oct 2010, 10:51, edited 1 time in total.
CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2601
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Reviews Badge
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 11:02
4
mrinal2100 wrote:
The ages of three friends are prime numbers. The sum of the ages is less than 51. If the ages are in Arithmetic Progression (AP) and if at least one of the ages is greater than 10, what is the difference between the maximum possible median and minimum possible median of the ages of the three friends?

(A) 0
(B) 1
(C) 13
(D) 6
(E) 8

i got the ans as


Let the numbers are a-d, a , a+d

sum <51 => a-d+a+a+d < 51 => middle number a <17

prime numbers are 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

a can be 3,5,7,11,13

if a is 3 -> a-d can be 2 only; a+d not possible thus reject this.
if a is 5, a-d can be 2 and 3; only a-d = 3 satisfies
=> three numbers can be 3,5,7 ->reject this , as it is given at least one is >10

if a = 7 ; a-d can be 3 and a+d can be 11
This satisfies all the conditions hence the median is 7=> min median.

if a = 11, the three element pair is 3,11,19 or 5,11,17
median = 11; we are not sure if its the max median possible

if a = 13, 7,13,19 pair is possible
median = 13; reject 11 as the max.

thus difference = 13-7 = 6
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2601
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Reviews Badge
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 11:03
whiplash2411 wrote:
The largest possible set of primes that fulfills this is 11, 13 and 17, since they have a common difference of 2 and they are prime numbers. So the largest possible median has to be 13.

Let's look at the smallest possible set of primes.

2, 3, 5 - Not in AP
3, 5, 7 - Not in AP
5, 7, 11 - AP!
7, 11, 13 - AP with common difference -2. 13 - 2 = 11, 11 - 4 = 7. But the median here is bigger than the median in the previous case. Hence we can rule this out.

The smallest possible set of primes that fulfills this is 5, 7 and 11. So this case, the median is 7 and hence the difference is 13 - 7 = 6

Is the answer D?


how the bolded parts are in AP?? check again.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2601
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Reviews Badge
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 11:05
nravi549 wrote:
Even i do agree with ans: A

Here is my version of explanation:

Let the 3 prime numbers be: x, y, z

Given: x + y + z = 51
Assume: x is smallest prime number among 3 numbers

Since these 3 are in Arithmetic progression:
y = x + d
z = x + 2d
==> x + y + z = x + (x + d) + (x + 2d) = 51
==> x + d = 17

Now, valid combinations are:




S.Nox d y z Comments
13 14 17 31 Valid solution
211 6 17 23 Valid solution
317 0 17 17 Valid solution


From above table three valid solutions (1) (2) & (3), The maximum median is: 17, The minimum median is:17
Hence, the difference is zero.

Cheers!
Ravi


Read closely. The sum of ages are less than 51, not equal to 51.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Intern
Intern
User avatar
Joined: 20 Jul 2010
Posts: 43
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 11:07
Oops..mis read it.
_________________

Cheers!
Ravi


If you like my post, consider giving me some KUDOS !!!

SVP
SVP
User avatar
Status: Three Down.
Joined: 09 Jun 2010
Posts: 1855
Concentration: General Management, Nonprofit
GMAT ToolKit User
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 11:09
The sum of the ages is less than 51. Not 51.

And AP doesn't necessarily mean the common difference is positive. It can be negative also. If you consider the series 13, 11 and 7, we have common difference of -2. It's a descending Arithmetic Progression.
SVP
SVP
User avatar
Status: Three Down.
Joined: 09 Jun 2010
Posts: 1855
Concentration: General Management, Nonprofit
GMAT ToolKit User
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 11:10
But, either way. Once we go beyond the first AP I mentioned, the median becomes larger and larger, so we can disregard the medians that are in between the largest and smallest. But this brings me to a question. When it says it's LESSER, is 51 included?
CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2601
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Reviews Badge
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 11:10
whiplash2411 wrote:
The sum of the ages is less than 51. Not 51.

And AP doesn't necessarily mean the common difference is positive. It can be negative also. If you consider the series 13, 11 and 7, we have common difference of -2. It's a descending Arithmetic Progression.


does 11+ (-2) = 7? :P

moreover it does not matter whether the d is -ve or +ve. one of the number will always be greater than the median and the other smaller.
We are only concerned with the MEDIAN.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

SVP
SVP
User avatar
Status: Three Down.
Joined: 09 Jun 2010
Posts: 1855
Concentration: General Management, Nonprofit
GMAT ToolKit User
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 21 Oct 2010, 11:20
I'm sleep deprived. Ignore that part of my answer.
Intern
Intern
User avatar
Joined: 21 Feb 2016
Posts: 9
Location: United States (MA)
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 18 Jun 2016, 06:37
VeritasPrepKarishma wrote:
When you want to take 3 numbers in AP, always take them to be a-d, a, a+d (as Gurpreet did above)
Note: On similar lines, 4 numbers in AP should be taken as a-3d, a-d, a+d, a+3d
This is done so that when the numbers are added, we can get rid of d.

If a-d + a + a+d < 51, we get a < 17

To get Minimum Median: Take smallest possible values. We need to take at least one number > 10 so take the greatest number as 11. Can you make an AP of prime numbers where 11 is the greatest number? Sure, 3, 7 and 11.
Note: When looking for prime numbers, consider only those numbers that end with 1/3/7/9

To get Maximum Median, median being 'a' that we assumed above, a <17 so the greatest median possible is 13. Now confirm whether you can you make an AP of primes with 13 as the middle number. I got one- 7, 13, 19. That's enough.

The difference between the maximum and minimum median will be 13 - 7 = 6


Your approach is good. But the marked portion does not seem to be correct.
I think it should be:a-2d, a-d, a, a+d
Senior Manager
Senior Manager
avatar
B
Joined: 13 Oct 2016
Posts: 367
GPA: 3.98
The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 05 Nov 2016, 04:40
1
mrinal2100 wrote:
The ages of three friends are prime numbers. The sum of the ages is less than 51. If the ages are in Arithmetic Progression (AP) and if at least one of the ages is greater than 10, what is the difference between the maximum possible median and minimum possible median of the ages of the three friends?

(A) 0
(B) 1
(C) 13
(D) 6
(E) 8


Other approach for the sake of diversity.

To maximize the sum (get it close to 51) prime numbers in progression must be \(>3\), and every prime number which is \(>3\) can be expressed as \(6k+1\) or \(6k-1\).

Let’s use this to find maximum median directly.

We will construct arithmetic progression in which every next prime has the same difference with previous one.

\(6k+1+6(k+1)+1+6(k+2)+1<51\)

from where our \(k<1,7\) The only integer value \(k\) can take is \(1\). (In case \((6k-1)\) we stiil have \(k<2\))

We have following max sum: \(6*1+1+6*2+1+6*3+1=7+13+19\)
Our Max median is \(13\).

To find Min median we’ll take maximum value in AP as \(11\), next smaller prime is \(7\). And to keep same common difference we take \(3\) as a third element of AP. So smaller median is \(7\).

Difference is \(13-7=6\)
VP
VP
User avatar
P
Joined: 05 Mar 2015
Posts: 1000
Re: The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 23 Mar 2017, 10:46
1
mrinal2100 wrote:
The ages of three friends are prime numbers. The sum of the ages is less than 51. If the ages are in Arithmetic Progression (AP) and if at least one of the ages is greater than 10, what is the difference between the maximum possible median and minimum possible median of the ages of the three friends?

(A) 0
(B) 1
(C) 13
(D) 6
(E) 8



i used answer choices...

find the lowest set..
ie { 3,7,11}
median=7
now add answer choices to 7 ..result will be prime again
7+0=7 ..No (we could not find such set with max. values)
7+1=8 ..not prime
7+13=20..not prime
7+6=13...Yes ,keep it
7+8=15..not prime

Ans D
VP
VP
avatar
P
Joined: 07 Dec 2014
Posts: 1116
The ages of three friends are prime numbers. The sum of the ages is  [#permalink]

Show Tags

New post 23 Mar 2017, 12:36
mrinal2100 wrote:
The ages of three friends are prime numbers. The sum of the ages is less than 51. If the ages are in Arithmetic Progression (AP) and if at least one of the ages is greater than 10, what is the difference between the maximum possible median and minimum possible median of the ages of the three friends?

(A) 0
(B) 1
(C) 13
(D) 6
(E) 8


lowest possible AP=3,7,11
highest possible AP=7,13,19 or 3,13,23
13-7=6
D
GMAT Club Bot
The ages of three friends are prime numbers. The sum of the ages is &nbs [#permalink] 23 Mar 2017, 12:36
Display posts from previous: Sort by

The ages of three friends are prime numbers. The sum of the ages is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.