TOB2020
Bunuel
SOLUTION
AB
x BA
The product of the two-digit numbers above is the three-digit number ACA, where A, B and C are three different nonzero digits. If A x B <10, what is the two-digit number AB?
(A) 11
(B) 12
(C) 13
(D) 21
(E) 31
First of all, since the digits must be distinct, then we can eliminate option A (11).
Next, simply plug in the options and see which satisfies AB x BA = ACA:
(B) 12 --> 12*21 --> the units digit is not 1. Discard.
(C) 13 --> 13*31 --> the units digit is not 1. Discard.
(D) 21 --> 21*12 = 252 = AB x BA = ACA. Bingo.
Answer: D.
I am not clear why units digit cannot be 1?
What you need is AB * BA = ACA. You need to find AB. In the product ACA, the unit's digit (A) should be the same as the tens digit of AB (which is also A) i.e. the tens digit of the number you want to find.
You know that 12 * 21 = 252
The units digit of 252 is 2. It should be same as the tens digit of the first number i.e. 12 but the tens digit of 12 is 1.
So the product should instead be written as 21 * 12 = 252. Now, tens digit of AB (i.e. 21) is 2 and units digit of ACA (252) is also 2. They match. So AB = 21 and not 12.
This is what is meant by "units digit is not 1". When you have 12*21, the product's units digit should be the same as the tens digit of 12 so it should be 1. But the product's units digit is not 1; it is 2. Hence, you discard this option.