GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 06 Dec 2019, 08:15 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many

Author Message
TAGS:

### Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 59586
The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

### Show Tags 00:00

Difficulty:   45% (medium)

Question Stats: 66% (02:04) correct 34% (02:08) wrong based on 187 sessions

### HideShow timer Statistics

The quantity $$3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3$$ will end in how many zeros ?

A. 3

B. 4

C. 5

D. 6

E. 9

_________________
Manager  S
Joined: 28 Nov 2017
Posts: 137
Location: Uzbekistan
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

### Show Tags

1
1
Bunuel wrote:
The quantity $$3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3$$ will end in how many zeros ?

A. 3

B. 4

C. 5

D. 6

E. 9

Let's rewrite the expression as follows:
$$3^3*4^4*5^5*6^6 - 3^6*4^5*5^4*6^3 = 3^3*4^4*5^4*6^3*(5*6^3 - 3^3*4)$$

$$3^3*4^4*5^4*6^3$$ will end in $$4$$ zeros.
$$(5*6^3 - 3^3*4)$$ will not end in zero (it will end in $$2$$).

Hence, the expression ends in $$4$$ zeros.

_________________
Kindest Regards!
Tulkin.
Target Test Prep Representative G
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2809
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

### Show Tags

1
Bunuel wrote:
The quantity $$3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3$$ will end in how many zeros ?

A. 3

B. 4

C. 5

D. 6

E. 9

Simplifying into primes we have:

3^3 x 2^8 x 5^5 x 2^6 x 3^6 - 3^6 x 2^10 x 5^4 x 2^3 x 3^3

3^9 x 2^14 x 5^5 - 3^9 x 2^13 x 5^4

Factoring out we have:

3^9 x 2^13 x 5^4(1 x 2 x 5 - (1 x 1 x 1))

3^9 x 2^13 x 5^4 x 9

We know that each occurrence of 10 in a factorization yields one trailing zero. Note that a “5 and 2” pair in a factorization is equivalent to a 10. Since we have four “5 and 2” pairs,, we have 4 trailing zeros.

_________________

# Jeffrey Miller

Jeff@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Senior Manager  B
Joined: 03 Sep 2018
Posts: 252
Location: Netherlands
GMAT 1: 710 Q48 V40 GMAT 2: 780 Q50 V49 GMAT 3: 760 Q49 V44 GPA: 4
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

### Show Tags

Can we not simply ignore every number that does not produce a trailing zero: $$5^5-5^4=5^4(5-1)$$ $$\implies$$ 4 trailing zeros?
_________________
Good luck to you.
Manager  S
Joined: 22 Sep 2018
Posts: 240
The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

### Show Tags

Bunuel wrote:
The quantity $$3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3$$ will end in how many zeros ?

A. 3

B. 4

C. 5

D. 6

E. 9

My reasoning if it helps anyone:

Break everything into primes, then factor out as much as you can to get rid of the subtraction element of this question.

$$3^9 * (2^{14}) * 5^5 - 3^9 * (2^{13}) * 5^4$$

$$3^9 * (2^{13}) * 5^4 (2*5 - 1)$$

The number of zeros a number will have is determined by how many times you multiply 10 to it.

In the above we can multiply 5*2 to get 10. We have four 5's, so we can create four 10's, hence our answer will have 4 zeros.

EDIT: it's supposed to say 2^14 and 2^13. I'm not sure why the math tag isn't working
Math Expert V
Joined: 02 Sep 2009
Posts: 59586
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

### Show Tags

kchen1994 wrote:
EDIT: it's supposed to say 2^14 and 2^13. I'm not sure why the math tag isn't working

When you have more than one character in exponents, put it in { }: 2^{123} --> $$2^{123}$$
_________________
Senior Manager  G
Joined: 12 Sep 2017
Posts: 308
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

### Show Tags

1

As we are searching for the number of 0's then we just have to look for the 2 and 5 pairs.

The limiting factor will be the 5's.

Five 0's - Four 0's

100000 - 10000 = 99..0000.

Hence... B
Intern  B
Joined: 05 Jan 2019
Posts: 10
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

### Show Tags

Hello,

How I approached answering this question :

To find: Number of trailing 0's after performing subtraction

Approach: I only looked at 2's and 5's on both the sides

4^4 * 5^5 = 2^8 * 5^5 {this will give me 5 trailing 0's at the end (2^5 * 5^5 - need to consider highest power of 5) }
Similarly, 4^5*5*4 = 2^10*5^4 { this will give me 4 trailing 0's at the end (2^4*5^4)}
so, now I have 100000-10000, this gives me 4 trailing 0's at the end.

Ans: B Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many   [#permalink] 25 Jan 2019, 14:33
Display posts from previous: Sort by

# The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  