Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

It is currently 22 Jul 2019, 00:50

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56319
The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

Show Tags

New post 01 May 2018, 05:55
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

67% (02:03) correct 33% (02:08) wrong based on 181 sessions

HideShow timer Statistics


Manager
Manager
User avatar
S
Joined: 28 Nov 2017
Posts: 142
Location: Uzbekistan
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

Show Tags

New post 01 May 2018, 06:14
1
1
Bunuel wrote:
The quantity \(3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3\) will end in how many zeros ?


A. 3

B. 4

C. 5

D. 6

E. 9


Let's rewrite the expression as follows:
\(3^3*4^4*5^5*6^6 - 3^6*4^5*5^4*6^3 = 3^3*4^4*5^4*6^3*(5*6^3 - 3^3*4)\)

\(3^3*4^4*5^4*6^3\) will end in \(4\) zeros.
\((5*6^3 - 3^3*4)\) will not end in zero (it will end in \(2\)).

Hence, the expression ends in \(4\) zeros.

Answer: B
_________________
Kindest Regards!
Tulkin.
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2822
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

Show Tags

New post 02 May 2018, 10:22
1
Bunuel wrote:
The quantity \(3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3\) will end in how many zeros ?


A. 3

B. 4

C. 5

D. 6

E. 9



Simplifying into primes we have:

3^3 x 2^8 x 5^5 x 2^6 x 3^6 - 3^6 x 2^10 x 5^4 x 2^3 x 3^3

3^9 x 2^14 x 5^5 - 3^9 x 2^13 x 5^4

Factoring out we have:

3^9 x 2^13 x 5^4(1 x 2 x 5 - (1 x 1 x 1))

3^9 x 2^13 x 5^4 x 9

We know that each occurrence of 10 in a factorization yields one trailing zero. Note that a “5 and 2” pair in a factorization is equivalent to a 10. Since we have four “5 and 2” pairs,, we have 4 trailing zeros.

Answer: B
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Manager
Manager
avatar
B
Joined: 03 Sep 2018
Posts: 63
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

Show Tags

New post 12 Jan 2019, 09:11
Can we not simply ignore every number that does not produce a trailing zero: \(5^5-5^4=5^4(5-1)\) \(\implies\) 4 trailing zeros?
_________________
Please consider giving Kudos if my post contained a helpful reply or question.
Manager
Manager
avatar
S
Joined: 22 Sep 2018
Posts: 249
The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

Show Tags

New post 21 Jan 2019, 22:19
Bunuel wrote:
The quantity \(3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3\) will end in how many zeros ?


A. 3

B. 4

C. 5

D. 6

E. 9


My reasoning if it helps anyone:

Break everything into primes, then factor out as much as you can to get rid of the subtraction element of this question.

\(3^9 * (2^{14}) * 5^5 - 3^9 * (2^{13}) * 5^4\)

\(3^9 * (2^{13}) * 5^4 (2*5 - 1)\)

The number of zeros a number will have is determined by how many times you multiply 10 to it.

In the above we can multiply 5*2 to get 10. We have four 5's, so we can create four 10's, hence our answer will have 4 zeros.

EDIT: it's supposed to say 2^14 and 2^13. I'm not sure why the math tag isn't working
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56319
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

Show Tags

New post 21 Jan 2019, 22:58
Senior Manager
Senior Manager
User avatar
S
Joined: 12 Sep 2017
Posts: 298
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

Show Tags

New post 22 Jan 2019, 16:06
1
My answer:

Idk if my approach is correct, could someone please help me to verify it?

As we are searching for the number of 0's then we just have to look for the 2 and 5 pairs.

The limiting factor will be the 5's.

Five 0's - Four 0's

100000 - 10000 = 99..0000.

Hence... B
Intern
Intern
avatar
B
Joined: 05 Jan 2019
Posts: 10
GMAT ToolKit User
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many  [#permalink]

Show Tags

New post 25 Jan 2019, 14:33
Hello,

How I approached answering this question :

To find: Number of trailing 0's after performing subtraction

Approach: I only looked at 2's and 5's on both the sides

4^4 * 5^5 = 2^8 * 5^5 {this will give me 5 trailing 0's at the end (2^5 * 5^5 - need to consider highest power of 5) }
Similarly, 4^5*5*4 = 2^10*5^4 { this will give me 4 trailing 0's at the end (2^4*5^4)}
so, now I have 100000-10000, this gives me 4 trailing 0's at the end.

Ans: B

Please advise if this logic is flawed.
GMAT Club Bot
Re: The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many   [#permalink] 25 Jan 2019, 14:33
Display posts from previous: Sort by

The quantity 3^3 4^4 5^5 6^6 - 3^6 4^5 5^4 6^3 will end in how many

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne