Author 
Message 
TAGS:

Hide Tags

SVP
Joined: 04 May 2006
Posts: 1892
Schools: CBS, Kellogg

What is the maximum number of rectangular blocks, each with [#permalink]
Show Tags
18 Jul 2009, 19:16
1
This post received KUDOS
1
This post was BOOKMARKED
Question Stats:
76% (01:46) correct
24% (00:40) wrong based on 308 sessions
HideShow timer Statistics
What is the maximum number of rectangular blocks, each with dimensions 12 centimeters by 6 centimeters by 4 centimeters, that will fit inside rectangular box X? (1) When box X is filled with the blocks and rests on a certain side, there are 25 blocks in the bottom layer. (2) The inside dimensions of box X are 60 centimeters by 30 centimeters by 20 centimeters.
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
GMAT Club Premium Membership  big benefits and savings
Last edited by Bunuel on 25 Mar 2012, 03:26, edited 1 time in total.
Edited the question and added the OA



Current Student
Joined: 18 Jun 2009
Posts: 356
Location: San Francisco
Schools: Duke,Oxford,IMD,INSEAD

Re: Maximumb blocks [#permalink]
Show Tags
18 Jul 2009, 21:31
2
This post received KUDOS
Stmt 1 ) we don't know how the blocks are arranged in the bottom row, ie: are they resting on 12cm dimension or 6 cm dimension or 4cm dimension
(2) The inside dimensions of box X are 60 centimeters by 30 centimeters by 20 centimeters.
No of Blocks = volume of the outside box/ volume of the inside small boxes = (60*30*20)/12*6*4
So Stmt 2 is sufficient so it is B
Can you please confirm with the OA



SVP
Joined: 05 Jul 2006
Posts: 1747

Re: Maximumb blocks [#permalink]
Show Tags
19 Jul 2009, 10:41
What is the maximum number of retangular blocks, each with dimensions 12 centimeters by 6 centimeters by 4 centimeters, that will fit inside rectangular box X?
1. When box X is filled with the blocks and rests on a certain side, there are 25 blocks in the bottom layer. 2. the inside dimensions of Box X are 60 centimeters by 30 centimeters by 20 centimeters.
25 = 25*1 or 5*5 so the only possible arrangement of the boxes is 25 of one row or 5*5 rows with each arrangement we can have differnt dimension for the big box........insuff
from 2
thinking volume 12*6*4 = 288 for each samll box , 36000 = volume of big one thus max number is 36000/288 = 125 boxes..suff
B is my answer



Manager
Joined: 15 Apr 2011
Posts: 70

Re: What is the maximum number of retangular blocks, each with [#permalink]
Show Tags
25 Mar 2012, 03:04
I didn't get this explanation. Can someone explain? Thanks.
_________________
http://mymbadreamz.blogspot.com



Math Expert
Joined: 02 Sep 2009
Posts: 39662

Re: What is the maximum number of retangular blocks, each with [#permalink]
Show Tags
25 Mar 2012, 03:45
2
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
mymbadreamz wrote: I didn't get this explanation. Can someone explain? Thanks. What is the maximum number of rectangular blocks, each with dimensions 12 centimeters by 6 centimeters by 4 centimeters, that will fit inside rectangular box X? (1) When box X is filled with the blocks and rests on a certain side, there are 25 blocks in the bottom layer. Useless info: the maximum # of boxes clearly will be different for the box X with the height of 12 centimeters and for the box X with the height of 12,000 centimeters (for example). Not sufficient. (2) The inside dimensions of box X are 60 centimeters by 30 centimeters by 20 centimeters > we have the dimensions of the little boxes as well as the dimensions of box X (basically we have all the info we could possibly knew), hence we can calculate the maximum # of boxes that will fit inside box X, no matter what this # actually is. Sufficient. Answer: B. Hope it helps.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 21 Feb 2008
Posts: 43
Location: United States
Concentration: Marketing, Nonprofit

Data Sufficiency [#permalink]
Show Tags
08 May 2012, 22:54
What is the maximum number of rectangular blocks, each with dimensions 12cms by 6cms by 4cms, that will fit inside rectangular box X?
1. When box X is filled with the blocks and rests on a certain side, there are 25 blocks in the bottom layer. 2. The inside dimensions of box X are 60cms by 30cms by 20 cms.



VP
Status: Top MBA Admissions Consultant
Joined: 24 Jul 2011
Posts: 1250
GRE 1: 1540 Q800 V740

Re: Data Sufficiency [#permalink]
Show Tags
08 May 2012, 23:50
Clearly (B) Statement 1: This will give us two dimensions of the larger box, but since we do not know the height of the larger box, this is insufficient. Statement 2: We know the dimensions of the larger box so we can calculate. Sufficient. B it is
_________________
GyanOne  Top MBA Rankings and MBA Admissions Blog
Top MBA Admissions Consulting  Top MiM Admissions Consulting
Premium MBA Essay ReviewBest MBA Interview PreparationExclusive GMAT coaching
Get a FREE Detailed MBA Profile Evaluation  Call us now +91 98998 31738



Math Expert
Joined: 02 Sep 2009
Posts: 39662

Re: Data Sufficiency [#permalink]
Show Tags
09 May 2012, 02:59



Math Expert
Joined: 02 Sep 2009
Posts: 39662

Re: What is the maximum number of rectangular blocks, each with [#permalink]
Show Tags
08 Sep 2013, 12:10



Manager
Joined: 18 May 2014
Posts: 63
Location: United States
Concentration: General Management, Other
GMAT Date: 07312014
GPA: 3.99
WE: Analyst (Consulting)

Re: What is the maximum number of rectangular blocks, each with [#permalink]
Show Tags
18 May 2014, 11:07
1
This post received KUDOS
statement (1): Now here are 25 blocks in bottom layer but we don't know which face is on the lower layer so we can't calculate the max no of block.
so statement is insufficient.
statement (2): dimension of rectangular box X = 60x30x20 cm3 volume = 60x30x20 = 36000 cm3 so dividing by volume of blocks , no. of max blocks that can be accommodated = 36000/288 = 125.
also area of faces of rectangular box = 60x30, 30x20, 60x20 = 1800,600, 1200 cm3.
now 1800/72 = 25 so 12x6 face exactly fits on 60x30 face. 20/4=5 thus overall 125 blocks sets fully inside it ..which was max capacity. so it is sufficient also if we check for other dimensions like 600/24 = 25, and 60/12=5 ..so it same also if we check 1200/48 = 25, and 30/6 = 5..so it is same.
if we take any other face ... u can't put max. blocks.. Hence B



Intern
Joined: 19 Jul 2014
Posts: 6

What is the maximum number of rectangular blocks, each with [#permalink]
Show Tags
06 Aug 2014, 11:55
Most of you are making a BIG mistake. The correct answer is B but many of you are incorrectly justifying your answer choice. In this scenario, you can't multiply the dimensions of the box to attain the total volume and then divide that number by the volume of the rectangular box to determine the total number of blocks that could fit. That's wrong. For example, I could ask what is the total number of rectangular blocks (10x2x1) that fit in a rectangular box of (5x4x1). Do you see the problem? With the method most of you are using, your answer to this question would be 1 block. However, while both volumes equal 20 cubic units, you can't fit a rectangular block with side length 10 into a box with side length 5 no matter how you try. The correct way of approaching this problem is demonstrated by Brunel: Bunuel wrote: (2) The inside dimensions of box X are 60 centimeters by 30 centimeters by 20 centimeters > we have the dimensions of the little boxes as well as the dimensions of box X (basically we have all the info we could possibly knew), hence we can calculate the maximum # of boxes that will fit inside box X, no matter what this # actually is. Sufficient.
Do NOT make this mistake on test day.



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15951

Re: What is the maximum number of rectangular blocks, each with [#permalink]
Show Tags
12 Feb 2016, 20:35
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: What is the maximum number of rectangular blocks, each with
[#permalink]
12 Feb 2016, 20:35







