GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 20 Oct 2019, 12:54

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

What is the remainder when |5^{13} -6^{14}|

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
e-GMAT Representative
User avatar
V
Joined: 04 Jan 2015
Posts: 3077
What is the remainder when |5^{13} -6^{14}|  [#permalink]

Show Tags

New post Updated on: 13 Aug 2018, 02:14
2
6
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

84% (01:17) correct 16% (01:46) wrong based on 297 sessions

HideShow timer Statistics

e-GMAT Question:



What is the remainder when |\(5^{13} -6^{14}\)| is divided by 10, where the symbol | | represents the modulus function.

    A) 0
    B) 1
    C) 2
    D) 3
    E) 4

This is

Question 3 of The e-GMAT Number Properties Marathon




Go to

Question 4 of the Marathon


_________________

Originally posted by EgmatQuantExpert on 27 Feb 2018, 09:57.
Last edited by EgmatQuantExpert on 13 Aug 2018, 02:14, edited 2 times in total.
Retired Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1178
Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
Re: What is the remainder when |5^{13} -6^{14}|  [#permalink]

Show Tags

New post 27 Feb 2018, 10:48
1
1
EgmatQuantExpert wrote:

Question:



What is the remainder when |\(5^{13} -6^{14}\)| is divided by 10, where the symbol | | represents the modulus function.

    A) 0
    B) 1
    C) 2
    D) 3
    E) 4


When a number is divided by 10, then the unit's digit of the number will be the remainder.

\(|5^{13}-6^{14}|=|6^{14}-5^{13}|\)

Now we know that \(5\) raised to any power will have unit's digit of \(5\) and \(6\) raised to any power will have unit's digit \(6\). so \(5^{13}\) will have unit's digit \(5\)

Similarly \(6^{14}\) will have unit's digit \(6\)

so unit's digit of \(|6^{14}-5^{13}|=|6-5|=1\)

Hence the remainder will be \(1\)

Option B
e-GMAT Representative
User avatar
V
Joined: 04 Jan 2015
Posts: 3077
Re: What is the remainder when |5^{13} -6^{14}|  [#permalink]

Show Tags

New post 27 Feb 2018, 23:30
1
1

Solution:



We are given an expression and asked to find out the remainder when the expression is divided by \(10\).
    • Per our conceptual knowledge, if a number is divided by \(10\), the remainder is equal to the units digit of the number itself.
    Thus, this question is asking us to find the units of the expression.
    Now, let us find the units digit of both the numbers.
    • \(5^{13}\)
        o \(5\) has a cyclicity of \(1\)
        o So, the units digit in \(5^{13} = 5\)
    • \(6^{14}\)
        o \(6\) has a cyclicity of \(1\)
        o So, the units digit in \(6^{14} = 6\)
    Now, between \(5^{13}\) and \(6^{14}, 6^{14}\) is larger and the value of \(5^{13}-6^{14}\) will be negative. However, the expression \(5^{13} - 6^{14}\) is between a modulus sign, thus, the final result will be positive.
    This means:
    • \(|5^{13} – 6^{14}|\) =\(|5 – 6|\) units digit = \(|-1|\)units digit = \(1\)
    • Thus, the units digit of \(|5^{13} - 6^{14}| = 1\)
Thus,\(|5^{13} -6^{14}|\) when divided by \(10\) will leave a remainder of \(1\), and hence the correct answer is Option B.
_________________
Intern
Intern
avatar
B
Joined: 06 Dec 2017
Posts: 14
GMAT ToolKit User
Re: What is the remainder when |5^{13} -6^{14}|  [#permalink]

Show Tags

New post 12 May 2019, 02:46
What if the answer choices had a 9 in it ?


x5- x6 = 9 ; x6 - x5 = 1( or 11)

xx9 % 10 = 9
xx1 % 10 = 1
GMAT Club Bot
Re: What is the remainder when |5^{13} -6^{14}|   [#permalink] 12 May 2019, 02:46
Display posts from previous: Sort by

What is the remainder when |5^{13} -6^{14}|

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne