MathRevolution wrote:
[
Math Revolution GMAT math practice question]
When A and B are positive integers, is AB a multiple of 4?
1) The greatest common divisor of A and B is 6
2) The least common multiple of A and B is 30
Another beautiful problem, Max. Congrats! (and kudos!)
\(A,B\,\,\, \ge 1\,\,\,{\rm{ints}}\)
\({{A \cdot B} \over 4}\,\,\,\mathop = \limits^? \,\,\,{\mathop{\rm int}}\)
\(\left( 1 \right)\,\,\,GCD\left( {A,B} \right) = 6\,\,\,\, \Rightarrow \,\,\,\left\{ \matrix{
\,A = 6M\,,\,\,\,M \ge 1\,\,{\mathop{\rm int}} \hfill \cr
\,B = 6N\,,\,\,\,N \ge 1\,\,{\mathop{\rm int}} \hfill \cr} \right.\,\,\,\,\,\,\,\,\,{\rm{with}}\,\,\,\,M,N\,\,\,{\rm{relatively}}\,\,\,{\rm{prime}}\)
\(?\,\,\,\,:\,\,\,\,{{A \cdot B} \over 4}\,\,\, = \,\,\,{{6M \cdot 6N} \over 4}\,\,\, = \,\,\,9MN\,\,\, = \,\,\,{\mathop{\rm int}} \,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\left\langle {{\rm{YES}}} \right\rangle\)
\(\left( 2 \right)\,\,\,LCM\left( {A,B} \right) = 30\,\,\,\,\,\,\left\{ \matrix{
\,{\rm{Take}}\,\,\left( {A,B} \right) = \left( {1,30} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr
\,{\rm{Take}}\,\,\left( {A,B} \right) = \left( {2,30} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \hfill \cr} \right.\)
The correct answer is (A), indeed.
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net