loneo3006 wrote:

Hi guys,

Just wanted to check the rule here with you.

"When two numbers have the same exponent, I can multiply the numbers together and keep the exponent as it was for the two numbers." Is this correct?

EXPONENTSExponents are a "shortcut" method of showing a number that was multiplied by itself several times. For instance, number \(a\) multiplied \(n\) times can be written as \(a^n\), where \(a\) represents the base, the number that is multiplied by itself \(n\) times and \(n\) represents the exponent. The exponent indicates how many times to multiple the base, \(a\), by itself.

Exponents one and zero:\(a^0=1\) Any nonzero number to the power of 0 is 1.

For example: \(5^0=1\) and \((-3)^0=1\)

• Note: the case of 0^0 is not tested on the GMAT.\(a^1=a\) Any number to the power 1 is itself.

Powers of zero:If the exponent is positive, the power of zero is zero: \(0^n = 0\), where \(n > 0\).

If the exponent is negative, the power of zero (\(0^n\), where \(n < 0\)) is undefined, because division by zero is implied.

Powers of one:\(1^n=1\) The integer powers of one are one.

Negative powers:\(a^{-n}=\frac{1}{a^n}\)

Powers of minus one:If n is an even integer, then \((-1)^n=1\).

If n is an odd integer, then \((-1)^n =-1\).

Operations involving the same exponents:Keep the exponent, multiply or divide the bases

\(a^n*b^n=(ab)^n\)\(\frac{a^n}{b^n}=(\frac{a}{b})^n\)

\((a^m)^n=a^{mn}\)

\(a^m^n=a^{(m^n)}\) and not \((a^m)^n\) (if exponentiation is indicated by stacked symbols, the rule is to work from the top down)

Operations involving the same bases:Keep the base, add or subtract the exponent (add for multiplication, subtract for division)

\(a^n*a^m=a^{n+m}\)

\(\frac{a^n}{a^m}=a^{n-m}\)

Fraction as power:\(a^{\frac{1}{n}}=\sqrt[n]{a}\)

\(a^{\frac{m}{n}}=\sqrt[n]{a^m}\)

ROOTSRoots (or radicals) are the "opposite" operation of applying exponents. For instance x^2=16 and square root of 16=4.

General rules:

• \(\sqrt{x}\sqrt{y}=\sqrt{xy}\) and \(\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}\).

• \((\sqrt{x})^n=\sqrt{x^n}\)

• \(x^{\frac{1}{n}}=\sqrt[n]{x}\)

• \(x^{\frac{n}{m}}=\sqrt[m]{x^n}\)

• \({\sqrt{a}}+{\sqrt{b}}\neq{\sqrt{a+b}}\)

• \(\sqrt{x^2}=|x|\), when \(x\leq{0}\), then \(\sqrt{x^2}=-x\) and when \(x\geq{0}\), then \(\sqrt{x^2}=x\)

• When the GMAT provides the square root sign for an even root, such as \(\sqrt{x}\) or \(\sqrt[4]{x}\), then the only accepted answer is the positive root.

That is, \(\sqrt{25}=5\), NOT +5 or -5. In contrast, the equation \(x^2=25\) has TWO solutions, +5 and -5.

Even roots have only a positive value on the GMAT.• Odd roots will have the same sign as the base of the root. For example, \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\).

8. Exponents and Roots of Numbers

Check below for more:

ALL YOU NEED FOR QUANT ! ! !Ultimate GMAT Quantitative Megathread
_________________

New to the Math Forum?

Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:

GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:

PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.

What are GMAT Club Tests?

Extra-hard Quant Tests with Brilliant Analytics