GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Oct 2019, 13:58

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

(x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 8033
GMAT 1: 760 Q51 V42
GPA: 3.82
(x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and  [#permalink]

Show Tags

New post 28 Feb 2019, 07:25
11
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

67% (01:56) correct 33% (02:38) wrong based on 66 sessions

HideShow timer Statistics

(x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and center (a,b). What is the radius of the circle with equation x^2 + y^2 – 10x + 4y = 20?

A. 4
B. 5
C. 6
D. 7
E. 8

_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $79 for 1 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"
Intern
Intern
avatar
B
Joined: 07 Feb 2018
Posts: 12
Location: India
Concentration: Technology, General Management
Re: (x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and  [#permalink]

Show Tags

New post 28 Feb 2019, 14:45
2
1
The secret to solving such questions is to make the given equation in question similar to the definition of circle.

The second key is to see the terms with single power (10x and 4y).

Now lets solve......

Make the equation as...

x^2 -(2 * x *5) + 5^2 - 5^2 + y^2 + (2 * y *2 ) + 2^2 -2^2 = 20
which means
(x-5)^2 + (y+2)^2 = 20+ 5^2+2^2 = 49 = 7^2

Thus 7 is the radius....

Give Kudos if you like the solution...Cheers !!! Happy Learning !!!
Manhattan Prep Instructor
User avatar
G
Joined: 04 Dec 2015
Posts: 832
GMAT 1: 790 Q51 V49
GRE 1: Q170 V170
Re: (x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and  [#permalink]

Show Tags

New post 28 Feb 2019, 18:37
MathRevolution wrote:
(x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and center (a,b). What is the radius of the circle with equation x^2 + y^2 – 10x + 4y = 20?

A. 4
B. 5
C. 6
D. 7
E. 8


This is an interesting problem, because while I've seen 'completing the square' used in solutions for GMAT problems before, I'm not sure that I've seen it required in an official problem. I'd be curious to see if anybody can show an official problem that requires you to do this.

Here's how it works: you need to take the equation you have, and put it in a form so that all of the variables are contained in the \((x-a)^2\) and the \((y-b)^2\) parts of the equation, and you only have numbers left over.

Focus on the x's first. The terms that have an x in them are \(x^2 - 10x\). You want to make that look like (x-something)^2.

Well, when you square (x-a), you end up with \(x-2ax+a^2\). So, 2a has to equal 10 in order for the expressions to look alike. That means we're looking at \((x-5)^2\).

\((x-5)^2\) equals\(x^2 - 10x + 25\). Therefore, \(x^2 - 10x\) can be rewritten as \((x-5)^2-25\).

Similarly, for the y terms, we'll rewrite as \((y+2)^2\), which equals \(y^2 + 4y + 4\). Therefore, \(y^2+4y\) can be rewritten as\((y+2)^2-4\).

Now, put those back into the original equation.

\(x^2 + y^2 – 10x + 4y = 20\)
\((x-5)^2 - 25 + (y+2)^2 - 4 = 20\)
\((x-5)^2 + (y+2)^2 = 20 + 4 + 25 = 49 = 7^2\)

So, the radius is 7.
_________________
Image

Chelsey Cooley | Manhattan Prep | Seattle and Online

My latest GMAT blog posts | Suggestions for blog articles are always welcome!
Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 8033
GMAT 1: 760 Q51 V42
GPA: 3.82
Re: (x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and  [#permalink]

Show Tags

New post 03 Mar 2019, 18:35
=>

\(x^2 + y^2 – 10x + 4y = 20\)
\(=> x^2 – 10x + y^2 + 4y = 20\)
\(=> x^2 – 10x + 25 + y^2 + 4y + 4 = 20 + 25 + 4\)
\(=> (x-5)^2 + (y+2)^2 = 49\)
\(=> (x-5)^2 + (y+2)^2 = 7^2\)

Thus the circle has center \((5,-2)\) and radius \(7\).

Therefore, the answer is D.
Answer: D
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $79 for 1 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"
Senior Manager
Senior Manager
User avatar
S
Joined: 12 Sep 2017
Posts: 302
Re: (x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and  [#permalink]

Show Tags

New post 15 Jun 2019, 10:50
ccooley wrote:
MathRevolution wrote:
(x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and center (a,b). What is the radius of the circle with equation x^2 + y^2 – 10x + 4y = 20?

A. 4
B. 5
C. 6
D. 7
E. 8


This is an interesting problem, because while I've seen 'completing the square' used in solutions for GMAT problems before, I'm not sure that I've seen it required in an official problem. I'd be curious to see if anybody can show an official problem that requires you to do this.

Here's how it works: you need to take the equation you have, and put it in a form so that all of the variables are contained in the \((x-a)^2\) and the \((y-b)^2\) parts of the equation, and you only have numbers left over.

Focus on the x's first. The terms that have an x in them are \(x^2 - 10x\). You want to make that look like (x-something)^2.

Well, when you square (x-a), you end up with \(x-2ax+a^2\). So, 2a has to equal 10 in order for the expressions to look alike. That means we're looking at \((x-5)^2\).

\((x-5)^2\) equals\(x^2 - 10x + 25\). Therefore, \(x^2 - 10x\) can be rewritten as \((x-5)^2-25\).

Similarly, for the y terms, we'll rewrite as \((y+2)^2\), which equals \(y^2 + 4y + 4\). Therefore, \(y^2+4y\) can be rewritten as\((y+2)^2-4\).

Now, put those back into the original equation.

\(x^2 + y^2 – 10x + 4y = 20\)
\((x-5)^2 - 25 + (y+2)^2 - 4 = 20\)
\((x-5)^2 + (y+2)^2 = 20 + 4 + 25 = 49 = 7^2\)

So, the radius is 7.


Hello ccooley

Can you please explain to me the red part?

Why can it be written as neg, the 25 and 4?

Kid regards!
GMAT Club Bot
Re: (x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and   [#permalink] 15 Jun 2019, 10:50
Display posts from previous: Sort by

(x-a)^2 + (y-b)^2 = r^2 is the equation of a circle with radius r and

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne