Last visit was: 14 Dec 2024, 13:54 It is currently 14 Dec 2024, 13:54
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Dec 2024
Posts: 97,877
Own Kudos:
685,884
 []
Given Kudos: 88,270
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,877
Kudos: 685,884
 []
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
User avatar
quantumliner
Joined: 24 Apr 2016
Last visit: 26 Sep 2018
Posts: 254
Own Kudos:
Given Kudos: 48
Posts: 254
Kudos: 723
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
niks18
User avatar
Retired Moderator
Joined: 25 Feb 2013
Last visit: 30 Jun 2021
Posts: 887
Own Kudos:
Given Kudos: 54
Location: India
GPA: 3.82
Products:
Posts: 887
Kudos: 1,620
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
JS1290
Joined: 27 Dec 2016
Last visit: 04 Nov 2019
Posts: 239
Own Kudos:
Given Kudos: 1,103
Posts: 239
Kudos: 251
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The answer should be D. We can solve this question under 30 seconds if we plug in a number for n. For instance, lets say n=2. According to the equation, we will get [(2+3)!^5]/[(2+2)!^5] which will equal to 5^5 as your final answer. Now, we just have to plug in n as 2 and see which of the multiple choices will give us 5^5 as our final answer. Only D will.

Kindly give me a kudos if you liked my approach! Thanks!!
User avatar
NaeemHasan
Joined: 06 Oct 2015
Last visit: 04 Feb 2019
Posts: 66
Own Kudos:
Given Kudos: 73
Location: Bangladesh
Concentration: Accounting, Leadership
Posts: 66
Kudos: 119
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel,
Is the answer really A?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Dec 2024
Posts: 97,877
Own Kudos:
Given Kudos: 88,270
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,877
Kudos: 685,884
Kudos
Add Kudos
Bookmarks
Bookmark this Post
NaeemHasan
Bunuel,
Is the answer really A?

The correct answer is D. Edited. Thank you.
User avatar
shashankism
Joined: 13 Mar 2017
Last visit: 09 Dec 2024
Posts: 619
Own Kudos:
Given Kudos: 88
Affiliations: IIT Dhanbad
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE:Engineering (Energy)
Posts: 619
Kudos: 624
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
\(\frac{[(n+3)!]^5}{[(n+2)!]^5} =\)

A. 2
B. (n+1)^5
C. (n+2)^5
D. (n+3)^5
E. ((n+3/(n+2))^5

\([\frac{(n+3)!}{(n+2)!}]^5=\)
(n+3)! = (n+3)(n+2)!
(n+3)!/(n+2)! = n+3

\([\frac{(n+3)!}{(n+2)!}]^5=\) = (n+3)^5

Answer D
User avatar
pushpitkc
Joined: 26 Feb 2016
Last visit: 24 Apr 2024
Posts: 2,856
Own Kudos:
Given Kudos: 47
Location: India
GPA: 3.12
Posts: 2,856
Kudos: 5,588
Kudos
Add Kudos
Bookmarks
Bookmark this Post
We need to find the value of the expression \(\frac{[(n+3)!]^5}{[(n+2)!]^5}\)

Plug n=0,
The expression \(\frac{[(n+3)!]^5}{[(n+2)!]^5} = \frac{[(3)!]^5}{[(2)!]^5} = \frac{[3*2!]^5}{[(2)!]^5} = \frac{[(3)^5*(2!)^5]}{[(2)!]^5} = (3)^5\)

Only Option D\((n+3)^5\) gives us the same value, and is our correct answer.
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,316
Own Kudos:
Given Kudos: 9,464
Products:
Expert reply
Posts: 5,316
Kudos: 36,320
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
\(\frac{[(n+3)!]^5}{[(n+2)!]^5} =\)

A. 2
B. (n+1)^5
C. (n+2)^5
D. (n+3)^5
E. ((n+3/(n+2))^5
I plugged in n = 0 and n = 1, then used law of exponents:
\(\frac{(a)^n}{(b)^n}\) = \((\frac{a}{b})^n\)

If n = 0:

\(\frac{(3*2*1)^5}{(2*1)^5}\) = \(\frac{(6)^5}{(2)^5}\) = \((\frac{6}{2})^5\) = \(3^5\)

n = 0. Result is \((n + 3)^5\)

To ascertain, I checked n = 1:

\(\frac{(4*3*2)^5}{(3*2)^5}\) = \(\frac{(24)^5}{(6)^5}\) = \((\frac{24}{6})^5\) = \(4^5\)

n = 1, result is \((n + 3)^5\)

Answer D
User avatar
Nunuboy1994
Joined: 12 Nov 2016
Last visit: 24 Apr 2019
Posts: 564
Own Kudos:
Given Kudos: 167
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
Posts: 564
Kudos: 119
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
\(\frac{[(n+3)!]^5}{[(n+2)!]^5} =\)

A. 2
B. (n+1)^5
C. (n+2)^5
D. (n+3)^5
E. ((n+3/(n+2))^5

Pick a simple value- 1


a^x/b^x =(a/b)^x

(4!)^5/ (3!)^5 =

4^5

D

Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Where to now? Join ongoing discussions on thousands of quality questions in our Problem Solving (PS) Forum
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.
Thank you for understanding, and happy exploring!
Moderators:
Math Expert
97877 posts
Senior Moderator - Masters Forum
3116 posts