amitdgr wrote:

A certain NYC taxi driver has decided to start charging a rate of r cents per person per mile. How much, in dollars, would it cost 3 people to travel x miles if he decides to give them a 50% discount?

A. 3xr/2

B. 3x/200r

C. 3r/200x

D. 3xr/200

E. xr/600

Let´s avoid exploring particular cases (undoubtedly very useful) to embrace

UNITS CONTROL, one of the most powerful tools of our method!

\(\frac{{r\,\,{\text{cents}}}}{{1\,\,{\text{person}}\,\, \cdot \,\,1\,\,{\text{mile}}}}\,\,\,\,\,\mathop \to \limits^{{\text{discount}}} \,\,\,\,\,\,\,\frac{{\frac{r}{2}\,\,{\text{cents}}}}{{1\,\,{\text{person}}\,\, \cdot \,\,1\,\,{\text{mile}}}}\,\,\,\, = \,\,\,\,\,\frac{1}{2}\,\,\frac{{r\,\,{\text{cents}}}}{{\,\,1\,\,{\text{person}}\,\, \cdot \,\,1\,\,{\text{mile}}}}\)

\(?\,\,\,:\,\,\$ \,\,{\text{for}}\,\,3\,\,{\text{people}}\,\,{\text{for}}\,\,x\,\,{\text{miles}}\,\,\,\left( {{\text{with}}\,\,{\text{discount}}} \right)\)

\(?\,\,\, = \,\,\,3\,\,{\text{person}}\,\,\, \cdot \,\,\,x\,\,{\text{miles}}\,\,\,\left( {\,\frac{1}{2}\,\,\frac{{r\,\,{\text{cents}}}}{{\,\,1\,\,{\text{person}}\,\, \cdot \,\,1\,\,{\text{mile}}}}\,} \right)\,\,\,\left( {\frac{{1\,\,\$ }}{{100\,\,{\text{cents}}}}} \right)\,\,\,\,\, = \,\,\,\,\,\,\$ \,\,\,\frac{{3xr}}{{200}}\,\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net