INSEAD Jan18 Admission Decisions - Join Us in the Chat for Live Decision Updates

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A college admissions committee will grant a certain number [#permalink]

Show Tags

15 Aug 2008, 03:03

3

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

25% (medium)

Question Stats:

67% (01:40) correct
33% (01:17) wrong based on 212 sessions

HideShow timer Statistics

A college admissions committee will grant a certain number of $10,000 scholarships, $5,000 scholarships, and $1,000 scholarships. If no student can receive more than one scholarship, how many different ways can the committee dole out the scholarships among the pool of 10 applicants?

(1) In total, six scholarships will be granted.

(2) An equal number of scholarships will be granted at each scholarship level

A college admissions committee will grant a certain number of $10,000 scholarships, $5,000 scholarships, and $1,000 scholarships. If no student can receive more than one scholarship, how many different ways can the committee dole out the scholarships among the pool of 10 applicants?

(1) In total, six scholarships will be granted.

(2) An equal number of scholarships will be granted at each scholarship level

statement 1 : we have total number of scholarships, but we dont have breakup of each type of scholarships. not suff statement 2 : we dont have total number of scholarships, not suff

combine : we have 2 scholarships of each type... Suff

A college admissions committee will grant a certain number of $10,000 scholarships, $5,000 scholarships, and $1,000 scholarships. If no student can receive more than one scholarship, how many different ways can the committee dole out the scholarships among the pool of 10 applicants?

(1) In total, six scholarships will be granted.

(2) An equal number of scholarships will be granted at each scholarship level

statement 1 : we have total number of scholarships, but we dont have breakup of each type of scholarships. not suff statement 2 : we dont have total number of scholarships, not suff

combine : we have 2 scholarships of each type... Suff

C

Do we really need to know distribution of scholarship?

We do need to know the number of each scholarship. If you have a variety, there are more options. For example: 3 @ $1k, 2 @ 5k and 1 @ 10k.

This could be \(C_10^3 + C_10_2 + C_10_1\) because you need to know how many ways each of the scholarships could be given. Compare this to:

All $5k scholarships would be \(C_10^6\). The different scholarships acts somewhat as a differentiator by order. I'm not sure what the final answer is for how many ways, but I'm pretty sure the answer is C to the DS question.

GMBA85 wrote:

A college admissions committee will grant a certain number of $10,000 scholarships, $5,000 scholarships, and $1,000 scholarships. If no student can receive more than one scholarship, how many different ways can the committee dole out the scholarships among the pool of 10 applicants?

(1) In total, six scholarships will be granted.

(2) An equal number of scholarships will be granted at each scholarship level

_________________

------------------------------------ J Allen Morris **I'm pretty sure I'm right, but then again, I'm just a guy with his head up his a$$.

A college admissions committee will grant a certain number of $10,000 scholarships, $5,000 scholarships, and $1,000 scholarships. If no student can receive more than one scholarship, how many different ways can the committee dole out the scholarships among the pool of 10 applicants?

(1) In total, six scholarships will be granted.

(2) An equal number of scholarships will be granted at each scholarship level

statement 1 : we have total number of scholarships, but we dont have breakup of each type of scholarships. not suff statement 2 : we dont have total number of scholarships, not suff

combine : we have 2 scholarships of each type... Suff

C

Why is 1) insufficient ? With 1) only, there 10C6 * (3^6) ways of doling out the schols .. choose 6 students in 10C6 ways and each of the 6 can be given one of the 3 types of schol.

I think this is a very important question concept wise. We always think that selecting r items from a collection of n items can be done in nCr ways. However, this is true only if r items are of the same type.

If r items are different within themselves, then we get more options since we have to multiply the possibilities of each of these subtypes:)

for 1), the different ways are 10P6, doesn't matter what scholarships are.

for 2), doesn't mean anything

Answer is A.

Hi Flyingbunny,

That was my take too before I got into the details. stmt1 is not sufficient because 10P6 will work only if the 6 items under consideration are of the SAME type. If we have different types (or varieties) then we will have more number of options for selection:)

eg. If there are 5 shirts of same color and you have to select 5 then you don't have many options but to go for the same color.

If there are 5 shirts of different colors and you have to select 5 then you have got more choices.

Try putting some numbers for different scholarship types and check the difference:)

\(X_1\times10000+x_2\times5000+x_3\times1000=Total Money Pool Value\)

1) Stmt 1: \(X_1+x_2+x_3=6\). Howerver, we do not know how many scholarships of each type were distributed. We can't assume any (\(x_1,X_2,X_3\)) such that \(X_1+x_2+x_3=6\), since the equation X_1\times10000+x_2\times5000+x_3\times1000=Total Money Pool Value might be violated. 2) Statement 2 : \(X_1=x_2=x_3=a\) not sufficient obviously...we do not know the total number of distributed scholarships and we do not know the total value of the money pool...hence we can't figure out the values...note that if we had the total value of money pool we could solve the problem.

Combined \(x_1+x_2+x_3=6\), \(x_1=x_2=x_3\)

From here x_1=x_2=x_3=2

Last edited by LenaA on 25 Aug 2009, 22:07, edited 1 time in total.

Although this is a DS question, I would like to find the value.

Combining statements 1 and 2, we have: 2 x 10k 2 x 5k 2 x 1k These have to be distributed among 10 students.

Distribute 2x10k among 10 students = ways of picking 2 students from 10 = 10C2 Distribute 2x5k among 8 students left = ways of picking 2 students from 8 = 8C2 Distribute 1x5k among 6 students left = ways of picking 2 students from 6 = 6C2 => 10C2*8C2*6C2 = 45*28*15 = 18,900

Have the feeling I'm doing something wrong.
_________________

i thought it was A, but my logic is just because there are 10 people and each person cant get the same scholorship doesnt fully define the problem. Because we know there are 3 different scholorships but dont know if its 6 of each or 2 2 2 than we cant fully calculate the total prob, thus you need statement 2. and the answer is C.

for 1), the different ways are 10P6, doesn't matter what scholarships are.

for 2), doesn't mean anything

Answer is A.

Hi Flyingbunny,

That was my take too before I got into the details. stmt1 is not sufficient because 10P6 will work only if the 6 items under consideration are of the SAME type. If we have different types (or varieties) then we will have more number of options for selection:)

eg. If there are 5 shirts of same color and you have to select 5 then you don't have many options but to go for the same color.

If there are 5 shirts of different colors and you have to select 5 then you have got more choices.

Try putting some numbers for different scholarship types and check the difference:)

I fell into the trap of answering A too, good explanation Economist, Thanks
_________________

Thanks, Sri ------------------------------- keep uppp...ing the tempo...

Press +1 Kudos, if you think my post gave u a tiny tip

powerka, Even I got the answer C and tried to find the number of ways using the following way: [1] choose any 6 students= 10C6 [2] Now, these 6 prizes(2+2+2) can be distributed to 6 people in 6!/ (2!*2!*2!) (divinding by 2! since 2 prizes of each of 3 prizes are same)

Thus number of ways: [1] * [2] = 18,900

However, I am not sure if the number of ways is correct.

Please, Quant moderator throw more light on the answer. Have my GMAT in a few days...

powerka, Even I got the answer C and tried to find the number of ways using the following way: [1] choose any 6 students= 10C6 [2] Now, these 6 prizes(2+2+2) can be distributed to 6 people in 6!/ (2!*2!*2!) (divinding by 2! since 2 prizes of each of 3 prizes are same)

Thus number of ways: [1] * [2] = 18,900

However, I am not sure if the number of ways is correct.

Please, Quant moderator throw more light on the answer. Have my GMAT in a few days...

x= number of 10,000 scholarships y= number of 5,000 scholarships z= number of 1,000 scholarships n= total number of scholarships granted = x+y+z = number of students who will receive scholarship (as no student can receive more than one scholarship)

# different ways the committee can dole out the scholarships among the pool of 10 applicants is \(C^n_{10}*\frac{(x+y+z)!}{x!y!z!}=C^n_{10}*\frac{n!}{x!y!z!}\).

\(C^n_{10}\) - choosing \(n\) students who will be granted the scholarship; \(\frac{n!}{x!y!z!}\) - # of ways we can distribute \(x\), \(y\) and \(z\) scholarships among \(n\) students.

So we need to know the values of \(n\), \(x\), \(y\) and \(z\) to answer the question.

(1) \(n=6\). Don't know \(x\), \(y\) and \(z\). Not sufficient. (2) \(x=y=z\). Don't have the exact values of \(x\), \(y\) and \(z\) . Not sufficient.

(1)+(2) \(n=6\) and \(x=y=z\). As \(n=6=x+y+z\) --> \(x=y=z=2\) --> # of ways \(C^n_{10}*\frac{n!}{x!y!z!}=C^6_{10}*\frac{6!}{2!2!2!}\). Sufficient.

And again: \(C^6_{10}\) - choosing \(6\) students who will be granted the scholarship; \(\frac{6!}{2!2!2!}\) - distributing \(xxyyzz\) (two of each) among 6 students, which is the # of permuatrions of 6 letters \(xxyyzz\).

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...