Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A group of n students can be divided into equal groups of 4 [#permalink]

Show Tags

03 Nov 2007, 05:32

2

This post received KUDOS

6

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

45% (medium)

Question Stats:

64% (02:21) correct
36% (01:29) wrong based on 373 sessions

HideShow timer Statistics

A group of n students can be divided into equal groups of 4 with 1 student left over or equal groups of 5 with 3 students left over. What is the sum of the two smallest possible values of n?

A group of n students can be divided into equal groups of 4 with 1 student left over or equal groups of 5 with 3 students left over. What is the sum of the two smallest possible values of n?

A group of n students can be divided into equal groups of 4 with 1 student left over or equal groups of 5 with 3 students left over. What is the sum of the two smallest possible values of n?

33 46 49 53 86

I got this so far

n = 4q + 1 n = 5q + 3

4q+1 + 5q+3 = 9q+4

plugging in value for q

q=1 q=2 q=3 q=4 q=5 = 45+4 = 49 ? not sure please help

Man ughhhh haha, I couldnt figure this question out forever. Was wondering why everyone was getting 46. I was like comon its 33.

question is really asking what is the SUM of the two possible values of n.

Re: A group of n students can be divided into equal groups of 4 [#permalink]

Show Tags

13 Sep 2012, 07:58

Isn't there any arithmetic solution to this question. I mean, just Hit n Trial method. Indeed there must be an arithmetic way out. Using this hit and trial method sometimes takes much longer time, henceforth I needed to go with a systematic approach.
_________________

Isn't there any arithmetic solution to this question. I mean, just Hit n Trial method. Indeed there must be an arithmetic way out. Using this hit and trial method sometimes takes much longer time, henceforth I needed to go with a systematic approach.

A group of n students can be divided into equal groups of 4 with 1 student left over or equal groups of 5 with 3 students left over. What is the sum of the two smallest possible values of n?

A. 33 B. 46 C. 49 D. 53 E. 86

Given: \(n=4q+1\), so \(n\) could be: 1, 5, 9, 13, ... \(n=5p+3\), so \(n\) could be: 3, 8, 13, ...

Re: A group of n students can be divided into equal groups of 4 [#permalink]

Show Tags

11 Dec 2013, 03:12

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: A group of n students can be divided into equal groups of 4 [#permalink]

Show Tags

11 Dec 2013, 05:52

1

This post was BOOKMARKED

4x + 1 = n (1) 5y + 3 = n (2)

Equating (1) and (2) 4x + 1 = 5y + 3 4x = 5y + 2 Put y=1,2,3,4,etc. Since (5y + 2) need to be a multiple of 4 to satisfy the equation on the left side. The 2 minimum values of y are 2 and 6.

So, n = 5y + 3 n = 5(2) + 3 = 13 and n = 5(6) + 3 = 33

Re: A group of n students can be divided into equal groups of 4 [#permalink]

Show Tags

26 Oct 2015, 20:01

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: A group of n students can be divided into equal groups of 4 [#permalink]

Show Tags

16 Oct 2016, 11:07

B is correct. Here's why:

Given the information in the question we can create the following two equations:

n = 4x+1 (5,9,13,17,21,25,29,33) n = 5y+3 (8,13,18,23,28,33)

The parentheses following the equations represent potential value of n given various values of x (i.e. 1+). We can see from these calculations that 13 and 33 line up with both equations. Therefore, we can add 13 and 33 and we are done

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...