Bunuel
A jar contains only black marbles and white marbles. If two thirds of the marbles are black, how many white marbles are in the jar?
(1) If two marbles were to be drawn, simultaneously and at random, from the jar, there is a 5/12 probability that both would be black.
(2) If one white marble were removed from the jar, there would be a 1/4 probability that a randomly-drawn marble (taken from the modified jar) would be white.
\({\rm{jar}}\,\,\,\left\{ \matrix{\\
\,B = 2x\,\,{\rm{marbles}} \hfill \cr \\
\,W = x\,\,{\rm{marbles}} \hfill \cr} \right.\,\,\,\,\,\,\,\left( {x \ge 1\,\,{\mathop{\rm int}} } \right)\,\,\,\,\,\,\left[ {{\mathop{\rm int}} = {\mathop{\rm int}} - {\mathop{\rm int}} = B - W = x} \right]\)
\(? = x\)
\(\left( 1 \right)\,\,\,{5 \over {12}} = {{C\left( {2x,2} \right)} \over {C\left( {2x + x,2} \right)}}\,\, = \,\,{{\,{{2x\left( {2x - 1} \right)} \over 2}\,} \over {\,{{3x\left( {3x - 1} \right)} \over 2}\,}}\,\, = \,\,{{2\left( {2x - 1} \right)} \over {3\left( {3x - 1} \right)}}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,15\left( {3x - 1} \right) = 24\left( {2x - 1} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,x\,\,{\rm{unique}}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{\rm{SUFF}}.\)
\(\left( 2 \right)\,\,\,{1 \over 4} = {{x - 1} \over {3x - 1}}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,3x - 1 = 4\left( {x - 1} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,x\,\,{\rm{unique}}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{\rm{SUFF}}{\rm{.}}\)
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.