GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 20 Apr 2019, 07:28

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

An integer x, with 10 <= x <= 99, is to be chosen. If all choices are

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 54375
An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 21 Mar 2019, 23:10
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

58% (01:42) correct 42% (01:33) wrong based on 45 sessions

HideShow timer Statistics

CEO
CEO
User avatar
P
Joined: 18 Aug 2017
Posts: 3004
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
GMAT ToolKit User Premium Member CAT Tests
An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post Updated on: 23 Mar 2019, 00:35
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3


total integerts = 99-10 +1 ; 90
so with 7 ; 19 integers possible from 10 to 99
P = 19/90
IMO C

@bunuel; is given answer correct? if yes then please provide solution
_________________
If you liked my solution then please give Kudos. Kudos encourage active discussions.

Originally posted by Archit3110 on 22 Mar 2019, 01:50.
Last edited by Archit3110 on 23 Mar 2019, 00:35, edited 1 time in total.
Intern
Intern
avatar
B
Joined: 13 Mar 2018
Posts: 14
Premium Member CAT Tests
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 22 Mar 2019, 21:58
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3


I got answer 1/5. But i am not sure how it is right. Request Bunnel to explain.. Thanks
Intern
Intern
avatar
Joined: 14 Jun 2015
Posts: 7
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 22 Mar 2019, 22:45
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3


optn B... 18/90..... OA pls...


Sent from my iPhone using GMAT Club Forum
CEO
CEO
User avatar
P
Joined: 18 Aug 2017
Posts: 3004
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
GMAT ToolKit User Premium Member CAT Tests
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 23 Mar 2019, 00:36
Abhigmat2019 wrote:
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3


optn B... 18/90..... OA pls...


Sent from my iPhone using GMAT Club Forum


Abhigmat2019
77 has 2 7's so it will be 19 7s...
_________________
If you liked my solution then please give Kudos. Kudos encourage active discussions.
CEO
CEO
User avatar
P
Joined: 18 Aug 2017
Posts: 3004
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
GMAT ToolKit User Premium Member CAT Tests
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 23 Mar 2019, 00:37
SWAPNILP wrote:
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3


I got answer 1/5. But i am not sure how it is right. Request Bunnel to explain.. Thanks


SWAPNILP
please share your solution of how you got 1/5.
_________________
If you liked my solution then please give Kudos. Kudos encourage active discussions.
Intern
Intern
avatar
B
Joined: 10 May 2018
Posts: 7
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 23 Mar 2019, 01:30
I initially picked C, but the problem is we are taking '77' twice while getting to 19. Therefore, it should be 18/90 = 1/5

Option B
Intern
Intern
avatar
B
Joined: 13 Mar 2018
Posts: 14
Premium Member CAT Tests
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 24 Mar 2019, 02:18
Archit3110 wrote:
SWAPNILP wrote:
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3


I got answer 1/5. But i am not sure how it is right. Request Bunnel to explain.. Thanks


SWAPNILP
please share your solution of how you got 1/5.


Hi Bunuel

Please find below my approach:
Step 1: total no of integers between 10 and 99 = 90
Step 2: Integers with digit 7 = 18
Step 3: Probability = 18C1/90C1 = 18/90 = 1/5

Please advise.
Intern
Intern
avatar
B
Joined: 23 Apr 2018
Posts: 25
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 24 Mar 2019, 03:16
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3


We have 99-10 = 89+1 (inclusive set) = 90 integers total..

We are asked AT LEAST ONE DIGIT OF X TO BE A 7 i.e we are okay even if we get a 77 and it won't be double counting because
"At least one 7 means", 2 or 3 or 4 or 5 or , as many 7's as possible are welcome in this combination.. but since the upper limit is 99, we have to stop at 97 here, because that's the last digit with AT LEAST ONE 7 In it.

therefore, we start with first digit with a 7 in it and go on...
17, 27, 37, 47, 57, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 87, 97 ..

We get 18 integers with AT least one 7..
and when divided by 90, which is the total number of integers in the given list.

we get
18/90 = 1/5

(B) as the answer.
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1282
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 24 Mar 2019, 03:47
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3



HOW TO FIND NUMBER OF TERMS FROM A TO Z

\(\frac{last..term - first..term}{2} +1\)

First lets find number of terms between 10 and 99 inclusive

\(\frac{99 - 10}{2} +1\) = \(45\)

we can have following numbers with at least one digit 7. And why everyone loves this number 7 :lol:

17, 27, 37, 47, 57, 67, 77, 87, 97

So total 9 numbers

Hence the probability that at least one digit of x is a 7 = \(\frac{9}{45}\) or \(\frac{1}{5}\)
CEO
CEO
User avatar
P
Joined: 18 Aug 2017
Posts: 3004
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
GMAT ToolKit User Premium Member CAT Tests
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 24 Mar 2019, 03:52
dave13
any reason why you havent considered no from 70 to 79...?


dave13 wrote:
Bunuel wrote:
An integer x, with \(10\leq x\leq 99\), is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) 1/9
(B) 1/5
(C) 19/90
(D) 2/9
(E) 1/3



HOW TO FIND NUMBER OF TERMS FROM A TO Z

\(\frac{last..term - first..term}{2} +1\)

First lets find number of terms between 10 and 99 inclusive

\(\frac{99 - 10}{2} +1\) = \(45\)

we can have following numbers with at least one digit 7. And why everyone loves this number 7 :lol:

17, 27, 37, 47, 57, 67, 77, 87, 97

So total 9 numbers

Hence the probability that at least one digit of x is a 7 = \(\frac{9}{45}\) or \(\frac{1}{5}\)

_________________
If you liked my solution then please give Kudos. Kudos encourage active discussions.
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1282
An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 24 Mar 2019, 04:00
Archit3110 wrote:
dave13
any reason why you havent considered no from 70 to 79...?



Archit3110
i actually used a shortcut, cause its less time consuming, well i think so :lol:

i used these numbers: 17, 27, 37, 47, 57, 67, 77, 87, 97

but if i reverse these numbers i get: 71, 72, 73, 74, 75, 76, 78, 79 and also 70

So total numbers now if you see 18: \(\frac{18}{90}\) = \(\frac{1}{5}\) same result :grin:


So if I consider, 70 to 79, then I have to consider the rest numbers that I have reversed :)
CEO
CEO
User avatar
P
Joined: 18 Aug 2017
Posts: 3004
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
GMAT ToolKit User Premium Member CAT Tests
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 24 Mar 2019, 04:07
1
dave13 wrote:
Archit3110 wrote:
dave13
any reason why you havent considered no from 70 to 79...?



Archit3110
i actually used a shortcut, cause its less time consuming, well i think so :lol:

i used these numbers: 17, 27, 37, 47, 57, 67, 77, 87, 97

but if i reverse these numbers i get: 71, 72, 73, 74, 75, 76, 78, 79 and also 70

So total numbers now if you see 18: \(\frac{18}{90}\) = \(\frac{1}{5}\) same result :grin:

dave13
ok, understood, but i dnt think this trick would be always helpful.. anyways thanks for enlightening on an alternate method.. :-D
_________________
If you liked my solution then please give Kudos. Kudos encourage active discussions.
Intern
Intern
avatar
B
Joined: 27 Mar 2018
Posts: 4
GMAT ToolKit User
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are  [#permalink]

Show Tags

New post 06 Apr 2019, 12:00
If anyone's interested in a solution without counting all possible number, here's one-

Number of ways a number can be picked = (99-10) + 1=> 90
An easier way to calculate probability to pick a number with atleast one 7 is: 1 - (Probability of picking a number with no 7s)

Probability of picking a number with no 7s-
Since the number has to be a two digit number, number of ways in which its ten's digit can be selected is 8 (since we can't use 7 or 0)
AND, number of ways in which its ten's digit can be selected is 9 (since we can't use 7)
Therefore, Probability of picking a number with no 7s = 72/90 or 4/5

And hence probability to pick a number with atleast one 7= 1 - 4/5 = 1/5
GMAT Club Bot
Re: An integer x, with 10 <= x <= 99, is to be chosen. If all choices are   [#permalink] 06 Apr 2019, 12:00
Display posts from previous: Sort by

An integer x, with 10 <= x <= 99, is to be chosen. If all choices are

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.