EgmatQuantExpert wrote:
Anna wants to distribute chocolates among her four children in the ratio \(\frac{1}{2} : \frac{1}{5} : \frac{1}{6} : \frac{1}{12}\). How many minimum chocolates should she buy, so that she can distribute the chocolates in the given ratio?
a. 30
b. 45
c. 57
d. 90
e. 120
\(? = \min \left( {{\rm{Total}}} \right)\)
\({1 \over 2}\,\,:\,\,{1 \over 5}\,\,:\,\,{1 \over 6}\,\,:\,\,{1 \over {12}}\,\,\,\,\mathop \Leftrightarrow \limits_{:\,\,60}^{ \cdot \,\,60} \,\,\,\,30:12:10:5\)
\(\left\{ \matrix{
{\rm{Child}}\,1 = 30k \hfill \cr
{\rm{Child}}\,2 = 12k \hfill \cr
{\rm{Child}}\,3 = 10k \hfill \cr
{\rm{Child}}\,4 = 5k \hfill \cr} \right.\,\,\,\,\,\,\,\,\left( {k > 0} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,Total = 57k\,\,\,\,\,\,\mathop \Rightarrow \limits^{k\,\,{\mathop{\rm int}} \,\,\left( * \right)} \,\,\,\,\,\,? = \min \,\,\left( {{\rm{Total}}} \right)\,\,\, = \,\,57 \cdot 1 = 57\)
\(\left( * \right)\,\,\,\,\left\{ \matrix{
5k\,\, = {\mathop{\rm int}} \hfill \cr
2k = 12k - 10k\,\, = \,\,{\mathop{\rm int}} - {\mathop{\rm int}} = {\mathop{\rm int}} \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,\,\,k = 5k - 2 \cdot \left( {2k} \right) = {\mathop{\rm int}} - 2 \cdot {\mathop{\rm int}} = {\mathop{\rm int}}\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net