GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 14 Oct 2019, 16:10 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  As shown in the figure above, line segments AB and AC are ta

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Senior Manager  Status: Verbal Forum Moderator
Joined: 17 Apr 2013
Posts: 445
Location: India
GMAT 1: 710 Q50 V36 GMAT 2: 750 Q51 V41 GMAT 3: 790 Q51 V49 GPA: 3.3
As shown in the figure above, line segments AB and AC are ta  [#permalink]

Show Tags

1
10 00:00

Difficulty:   45% (medium)

Question Stats: 69% (02:41) correct 31% (02:35) wrong based on 137 sessions

HideShow timer Statistics

Attachment: geometry_graphics_1.gif [ 6.48 KiB | Viewed 4353 times ]
As shown in the figure above, line segments AB and AC are tangent to circle O. If line segments BD and DA have the same length, what is angle BAO? (Note: Figure not drawn to scale.)

A. 15º
B. 30º
C. 36º
D. 45º
E. 50º

_________________
Like my post Send me a Kudos It is a Good manner.
My Debrief: http://gmatclub.com/forum/how-to-score-750-and-750-i-moved-from-710-to-189016.html
Intern  Joined: 10 Jun 2014
Posts: 20
Re: As shown in the figure above, line segments AB and AC are ta  [#permalink]

Show Tags

2
I did't think this question was easy, but I finally came up with the solution.

step 1: since AB and AC are tangent to the circle then, angles OBA = OCA =90º
step 2: Angle BAO = angle DBA = x and angle BDA = y
step 3: OB = OD (both radii of circle O) and therefore triangle BOD is isosceles so angle OBD = angle ODB =z
step 4: 2x + y = 180 , y + z =180 , x+z =90
step 5: solve both equations for variable z -> z=180-y, z = 90-x
step 6: 90-x=180-y
y-x = 90
step 7: y+2x=180
y - x = 90 (-1)
3x=90
x = 30

If someone knows a faster way to solve this question please post!
Director  S
Joined: 17 Dec 2012
Posts: 626
Location: India
As shown in the figure above, line segments AB and AC are ta  [#permalink]

Show Tags

It seems to me that if a line drawn from the hypotenuse of a right triangle to the opposite vertex, creates two triangles, such that one of the them is isosceles, the other has to be an isosceles or an equilateral triangle. We can easily arrive at the answer if that is the case.
_________________
Srinivasan Vaidyaraman
Sravna Test Prep
http://www.sravnatestprep.com

Holistic and Systematic Approach

Originally posted by SravnaTestPrep on 17 Jul 2014, 22:37.
Last edited by SravnaTestPrep on 20 Jul 2014, 19:29, edited 1 time in total.
Manager  Joined: 11 Feb 2014
Posts: 59
Re: As shown in the figure above, line segments AB and AC are ta  [#permalink]

Show Tags

1
a13ssandra wrote:
I did't think this question was easy, but I finally came up with the solution.

step 1: since AB and AC are tangent to the circle then, angles OBA = OCA =90º
step 2: Angle BAO = angle DBA = x and angle BDA = y
step 3: OB = OD (both radii of circle O) and therefore triangle BOD is isosceles so angle OBD = angle ODB =z
step 4: 2x + y = 180 , y + z =180 , x+z =90
step 5: solve both equations for variable z -> z=180-y, z = 90-x
step 6: 90-x=180-y
y-x = 90
step 7: y+2x=180
y - x = 90 (-1)
3x=90
x = 30

If someone knows a faster way to solve this question please post!

No need to use another variable z in step 3, apply the theorem "exterior angle = sum of opp. interior angle".
angle ODB (=OBD) = angle BAO + angle DBA = 2x
angle OBD + angle DBA = 90
$$2x + x = 90$$
$$x = 30$$
Director  S
Joined: 17 Dec 2012
Posts: 626
Location: India
Re: As shown in the figure above, line segments AB and AC are ta  [#permalink]

Show Tags

SravnaTestPrep wrote:
It seems to me that if a line drawn from the hypotenuse of a right triangle to the opposite vertex, creates two triangles, such that one of the them is isosceles, the other has to be an isosceles or an equilateral triangle. We can easily arrive at the answer if that is the case.

In the above case 2OBD = BDA
We also have OBD+DBO= BDA
therefore OBD=DBO and so triangle OBD is equilateral from which we can find BAD=BAO=30 degrees
_________________
Srinivasan Vaidyaraman
Sravna Test Prep
http://www.sravnatestprep.com

Holistic and Systematic Approach
Intern  Joined: 18 Sep 2013
Posts: 5
WE: Engineering (Manufacturing)
As shown in the figure above, line segments AB and AC are ta  [#permalink]

Show Tags

honchos wrote:
Attachment:
geometry_graphics_1.gif
As shown in the figure above, line segments AB and AC are tangent to circle O. If line segments BD and DA have the same length, what is angle BAO? (Note: Figure not drawn to scale.)

A. 15º
B. 30º
C. 36º
D. 45º
E. 50º

Angle OBA = 90

Angle ODB = Angle DBA + Angle DAB ---------- (Exterior angle = Sum of opposite interior angles)

We can say ODB is double the angle DBA as the triangle ADB is isosceles ................. Which In turn means Angle OBD is double the angle DBA As the triangle BOD is isosceles

Considering above Angle OBA = 90 can only be split in 30 + 60 ....... so the angle OAB = 30
Non-Human User Joined: 09 Sep 2013
Posts: 13144
Re: As shown in the figure above, line segments AB and AC are ta  [#permalink]

Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: As shown in the figure above, line segments AB and AC are ta   [#permalink] 27 Oct 2018, 00:33
Display posts from previous: Sort by

As shown in the figure above, line segments AB and AC are ta

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  