Last visit was: 10 Jul 2025, 01:30 It is currently 10 Jul 2025, 01:30
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
enigma123
Joined: 25 Jun 2011
Last visit: 16 Mar 2016
Posts: 392
Own Kudos:
18,654
 [58]
Given Kudos: 217
Status:Finally Done. Admitted in Kellogg for 2015 intake
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE:Information Technology (Consulting)
GMAT 1: 730 Q49 V45
Posts: 392
Kudos: 18,654
 [58]
11
Kudos
Add Kudos
46
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,612
Own Kudos:
Given Kudos: 98,068
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 739,974
 [25]
13
Kudos
Add Kudos
12
Bookmarks
Bookmark this Post
General Discussion
User avatar
enigma123
Joined: 25 Jun 2011
Last visit: 16 Mar 2016
Posts: 392
Own Kudos:
18,654
 [1]
Given Kudos: 217
Status:Finally Done. Admitted in Kellogg for 2015 intake
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE:Information Technology (Consulting)
GMAT 1: 730 Q49 V45
Posts: 392
Kudos: 18,654
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,612
Own Kudos:
739,974
 [1]
Given Kudos: 98,068
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 739,974
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
enigma123
Sorry Bunuel - in your explanation, how come longest leg be ZX? I think it should be XP because that's opposite to 90 degree angle. Also, do you mind telling me how did you find out which side will correspond to 60 degree and 30 degree angle?

XP is hypotenuse, which obviously is the longest side but the longest leg is ZX (so the second longest side).

In a right triangle where the angles are 30°, 60°, and 90° the sides are always in the ratio \(1 : \sqrt{3}: 2\). Notice that the smallest side (1) is opposite the smallest angle (30°), and the longest side (2) is opposite the largest angle (90°). Since the ratio of the leg ZP to the hypotenuse XP is 1:2, then ZP (the shortest side) corresponds to 1 and thus is the opposite of the smallest angle 30°, which means that another leg ZX corresponds to \(\sqrt{3}\).

Hope it's clear.
User avatar
enigma123
Joined: 25 Jun 2011
Last visit: 16 Mar 2016
Posts: 392
Own Kudos:
18,654
 [1]
Given Kudos: 217
Status:Finally Done. Admitted in Kellogg for 2015 intake
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE:Information Technology (Consulting)
GMAT 1: 730 Q49 V45
Posts: 392
Kudos: 18,654
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Sorry Bunuel - still struggling. How did you get XZ = sqrt3/2? Apologies for been a pain.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,612
Own Kudos:
739,974
 [3]
Given Kudos: 98,068
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 739,974
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
enigma123
Sorry Bunuel - still struggling. How did you get XZ = sqrt3/2? Apologies for been a pain.

It's not a problem at all.

Since \(\frac{XZ}{XP}=\frac{\sqrt{3}}{2}\) (from 30°, 60°, and 90° right triangle ratio) and \(XP=r=1\) then \(\frac{XZ}{1}=\frac{\sqrt{3}}{2}\) -->\(XZ=\frac{\sqrt{3}}{2}\).

Hope it's clear.
avatar
keenys
Joined: 12 Mar 2013
Last visit: 27 May 2015
Posts: 12
Own Kudos:
2
 [1]
Given Kudos: 14
Posts: 12
Kudos: 2
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Attachment:
Chord.PNG
For a circle with center point P, cord XY is the perpendicular bisector of radius AP (A is a point on the edge of the circle). What is the length of cord XY?

From the diagram and the stem: AZ=ZP=r/2. In a right triangle ZPX ratio of ZP to XP is 1:2, hence ZPX is a 30-60-90 right triangle where the sides are in ratio: \(1:\sqrt{3}:2\). The longest leg is ZX which corresponds with \(\sqrt{3}\) and is opposite to 60 degrees angle. Thus <XPY=60+60=120


(1) The circumference of circle P is twice the area of circle P --> \(2\pi{r}=2*\pi{r^2}\) --> \(r=1\) --> \(XZ=\frac{\sqrt{3}}{2}\) --> \(XY=2*XZ=\sqrt{3}\). Sufficient.

(2) The length of Arc XAY = 2pi/3 --> \(\frac{2\pi}{3}=\frac{120}{360}*2\pi{r}\) --> \(r=1\), the same as above. Sufficient.

Answer: D.


Hi Bunuel,

How did you assume ZPX is a 30-60-90 right triangle just from the ratio of ZP to XP (1:2). How can we assume in any triangle if the two sides are in the ratio 1:2, it will be a 30-60-90 triangle?

I thought we have to know we have to know that the triangle is 30-60-90 triangle beforehand to calculated the third side based on the ratio of two given sides.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,612
Own Kudos:
739,974
 [1]
Given Kudos: 98,068
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 739,974
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
keenys
Bunuel

For a circle with center point P, cord XY is the perpendicular bisector of radius AP (A is a point on the edge of the circle). What is the length of cord XY?

From the diagram and the stem: AZ=ZP=r/2. In a right triangle ZPX ratio of ZP to XP is 1:2, hence ZPX is a 30-60-90 right triangle where the sides are in ratio: \(1:\sqrt{3}:2\). The longest leg is ZX which corresponds with \(\sqrt{3}\) and is opposite to 60 degrees angle. Thus <XPY=60+60=120


(1) The circumference of circle P is twice the area of circle P --> \(2\pi{r}=2*\pi{r^2}\) --> \(r=1\) --> \(XZ=\frac{\sqrt{3}}{2}\) --> \(XY=2*XZ=\sqrt{3}\). Sufficient.

(2) The length of Arc XAY = 2pi/3 --> \(\frac{2\pi}{3}=\frac{120}{360}*2\pi{r}\) --> \(r=1\), the same as above. Sufficient.

Answer: D.


Hi Bunuel,

How did you assume ZPX is a 30-60-90 right triangle just from the ratio of ZP to XP (1:2). How can we assume in any triangle if the two sides are in the ratio 1:2, it will be a 30-60-90 triangle?

I thought we have to know we have to know that the triangle is 30-60-90 triangle beforehand to calculated the third side based on the ratio of two given sides.

Notice that since XY is the perpendicular to AP, then ZPX is a right triangle with right angle at Z. So, we have that side:hypotenuse=1:2, which means that we have 30-60-90 triangle, where the ratio of the sides is \(1:\sqrt{3}:2\).
avatar
keenys
Joined: 12 Mar 2013
Last visit: 27 May 2015
Posts: 12
Own Kudos:
Given Kudos: 14
Posts: 12
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks for you reply Bunuel.

However, I still did not understand. Here we have angle XZP=90, XP=r and ZP=r/2.

We do not know that the other angles are 60 and 30 respectively. How can we use the ratio of two sides not three to conclude that it is a 30-60-90 triangle?

Should we know beforehand that it is a 30-60-90 triangle to use two sides to calculate the third one?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,612
Own Kudos:
739,974
 [3]
Given Kudos: 98,068
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 739,974
 [3]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
keenys
Thanks for you reply Bunuel.

However, I still did not understand. Here we have angle XZP=90, XP=r and ZP=r/2.

We do not know that the other angles are 60 and 30 respectively. How can we use the ratio of two sides not three to conclude that it is a 30-60-90 triangle?

Should we know beforehand that it is a 30-60-90 triangle to use two sides to calculate the third one?

When we know two sides in a right triangle the third one is fixed.

We have side:hypotenuse=1x:2x --> third side = \(\sqrt{(2x)^2-x^2}=\sqrt{3}*x\), so the sides are in the ratio: \(1:\sqrt{3}:2\) --> 30-60-90 triangle.

Does this make sense?
avatar
keenys
Joined: 12 Mar 2013
Last visit: 27 May 2015
Posts: 12
Own Kudos:
Given Kudos: 14
Posts: 12
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
keenys
Thanks for you reply Bunuel.

However, I still did not understand. Here we have angle XZP=90, XP=r and ZP=r/2.

We do not know that the other angles are 60 and 30 respectively. How can we use the ratio of two sides not three to conclude that it is a 30-60-90 triangle?

Should we know beforehand that it is a 30-60-90 triangle to use two sides to calculate the third one?

When we know two sides in a right triangle the third one is fixed.

We have side:hypotenuse=1x:2x --> third side = \(\sqrt{(2x)^2-x^2}=\sqrt{3}*x\), so the sides are in the ratio: \(1:\sqrt{3}:2\) --> 30-60-90 triangle.

Does this make sense?

Thanks Bunuel. Now it makes complete sense.

I missed the last part in calculating the third side using Pythagoras.
User avatar
obs23
Joined: 06 Feb 2013
Last visit: 03 Jan 2015
Posts: 35
Own Kudos:
Given Kudos: 35
Posts: 35
Kudos: 269
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
We have side:hypotenuse=1x:2x --> third side = \(\sqrt{(2x)^2-x^2}=\sqrt{3}*x\)

I wonder if this is just today...that I am looking at this perfectly clear explanation and still do not get it. I did a couple of minutes later. So first of - thanks for detailed explanations Bunuel and others. I just wanted to add that \((2x)^2-x^2 = 3x^2\) for those who look at the formula with a predetermined mind so focused on that formula and as a result forget to calculate this basic stuff, perhaps wondering where that \(\sqrt{3}*x\) came from. It is possible it is just me, but it often appears to me that it is not. This is one of those..."duuuhhh"s :)
User avatar
maaadhu
Joined: 04 Apr 2013
Last visit: 16 Sep 2014
Posts: 96
Own Kudos:
Given Kudos: 36
Posts: 96
Kudos: 186
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
keenys
Thanks for you reply Bunuel.

However, I still did not understand. Here we have angle XZP=90, XP=r and ZP=r/2.

We do not know that the other angles are 60 and 30 respectively. How can we use the ratio of two sides not three to conclude that it is a 30-60-90 triangle?

Should we know beforehand that it is a 30-60-90 triangle to use two sides to calculate the third one?

When we know two sides in a right triangle the third one is fixed.

We have side:hypotenuse=1x:2x --> third side = \(\sqrt{(2x)^2-x^2}=\sqrt{3}*x\), so the sides are in the ratio: \(1:\sqrt{3}:2\) --> 30-60-90 triangle.

Does this make sense?

Bunuel,

If 2 pi r = 2 pi r^2

then either r=0 or r=1

Since radius is always +ve, its safe to assume that r=1. Is that correct?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,612
Own Kudos:
Given Kudos: 98,068
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 739,974
Kudos
Add Kudos
Bookmarks
Bookmark this Post
maaadhu
Bunuel
keenys
Thanks for you reply Bunuel.

However, I still did not understand. Here we have angle XZP=90, XP=r and ZP=r/2.

We do not know that the other angles are 60 and 30 respectively. How can we use the ratio of two sides not three to conclude that it is a 30-60-90 triangle?

Should we know beforehand that it is a 30-60-90 triangle to use two sides to calculate the third one?

When we know two sides in a right triangle the third one is fixed.

We have side:hypotenuse=1x:2x --> third side = \(\sqrt{(2x)^2-x^2}=\sqrt{3}*x\), so the sides are in the ratio: \(1:\sqrt{3}:2\) --> 30-60-90 triangle.

Does this make sense?

Bunuel,

If 2 pi r = 2 pi r^2

then either r=0 or r=1

Since radius is always +ve, its safe to assume that r=1. Is that correct?

Yes, because we obviously have a circle.
avatar
damamikus
Joined: 10 Jan 2014
Last visit: 12 Oct 2017
Posts: 16
Own Kudos:
Given Kudos: 6
Posts: 16
Kudos: 35
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hey!

Could someone please check my calculations? I keep getting a wrong answer (I tried to solve it in a slightly different way but nonetheless the solution should be the same) for statement 1:

so, according to statement 1 --> 2pir=2pir² <=> r=1 ; for the following calculations, please see the attached image below.

(1) m°+n°=90° --> n°=90°-m°
(2) w°+p°=90°
(3)n°+p°=90°

--> (1) in (2): 90°-m°+p°=90° --> m°=p°, similarly: n°=w° ----> AXZ and XZB are similar triangles, hence, their side ratios will be equal.
--> (XZ/0.5)=(0.75/XZ) <=>2XZ=(3/4XZ) <=> XZ²=3/8 <=> XZ=0.5(3/2)^(1/2) --> XZ=2XZ=(3/2)^(1/2)

I tried the calculations again and again, but i keep getting the same wrong answer and not 3^(1/2). What did I do wrong? I know that the 30-60-90 approach is easier and probably quicker but I am still confused about what error I made in my calculations/ approach. If someone can help, please do so :)

Max
Attachments

chord-problem.jpg
chord-problem.jpg [ 34.19 KiB | Viewed 28404 times ]

User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,612
Own Kudos:
739,974
 [1]
Given Kudos: 98,068
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 739,974
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
damamikus
Hey!

Could someone please check my calculations? I keep getting a wrong answer (I tried to solve it in a slightly different way but nonetheless the solution should be the same) for statement 1:

so, according to statement 1 --> 2pir=2pir² <=> r=1 ; for the following calculations, please see the attached image below.

(1) m°+n°=90° --> n°=90°-m°
(2) w°+p°=90°
(3)n°+p°=90°

--> (1) in (2): 90°-m°+p°=90° --> m°=p°, similarly: n°=w° ----> AXZ and XZB are similar triangles, hence, their side ratios will be equal.
--> (XZ/0.5)=(0.75/XZ) <=>2XZ=(3/4XZ) <=> XZ²=3/8 <=> XZ=0.5(3/2)^(1/2) --> XZ=2XZ=(3/2)^(1/2)

I tried the calculations again and again, but i keep getting the same wrong answer and not 3^(1/2). What did I do wrong? I know that the 30-60-90 approach is easier and probably quicker but I am still confused about what error I made in my calculations/ approach. If someone can help, please do so :)

Max

\(\frac{XZ}{AZ} = \frac{ZB}{XZ}\) --> \(AZ = 0.5\) and \(ZB = 1.5\), not 0.75.

\(\frac{XZ}{0.5} = \frac{1.5}{XZ}\) --> \(XZ^2 = \frac{3}{4}\) --> \(XZ=\frac{\sqrt{3}}{2}\).

Hope it helps.
avatar
damamikus
Joined: 10 Jan 2014
Last visit: 12 Oct 2017
Posts: 16
Own Kudos:
Given Kudos: 6
Posts: 16
Kudos: 35
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks a lot Bunuel! I totally missed that number-error! :)
avatar
adymehta29
Joined: 12 May 2013
Last visit: 25 Aug 2015
Posts: 37
Own Kudos:
Given Kudos: 12
Posts: 37
Kudos: 105
Kudos
Add Kudos
Bookmarks
Bookmark this Post
enigma123
Attachment:
Untitled.png
For a circle with center point P, cord XY is the perpendicular bisector of radius AP (A is a point on the edge of the circle). What is the length of cord XY?

(1) The circumference of circle P is twice the area of circle P.
(2) The length of Arc XAY = \(\frac{2\pi}{3}\).

How come the answer is D? I have drawn these pictures as they were not provided with the questions. Even though with my guess work I have selected A which is incorrect. Can someone please let me know how to solve this? Also, I understand this will include a concept of 30-60-90 degree triangle - any idea which angles to assign 30 and 60 degrees?
hi bunuel ! can u please explain the 2nd condition how did we get 120 degree ?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,612
Own Kudos:
Given Kudos: 98,068
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,612
Kudos: 739,974
Kudos
Add Kudos
Bookmarks
Bookmark this Post
adymehta29
enigma123
Attachment:
Untitled.png
For a circle with center point P, cord XY is the perpendicular bisector of radius AP (A is a point on the edge of the circle). What is the length of cord XY?

(1) The circumference of circle P is twice the area of circle P.
(2) The length of Arc XAY = \(\frac{2\pi}{3}\).

How come the answer is D? I have drawn these pictures as they were not provided with the questions. Even though with my guess work I have selected A which is incorrect. Can someone please let me know how to solve this? Also, I understand this will include a concept of 30-60-90 degree triangle - any idea which angles to assign 30 and 60 degrees?
hi bunuel ! can u please explain the 2nd condition how did we get 120 degree ?


The central angle which subtends arc XAY is angle XPY, which is 60+60=120 degrees.

Hope it's clear.
User avatar
lalania1
Joined: 17 Nov 2013
Last visit: 04 May 2017
Posts: 63
Own Kudos:
Given Kudos: 19
Posts: 63
Kudos: 272
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,

What formula have you applied to make statement 2 sufficient. Could you please explain. thanks!

(2) The length of Arc XAY = 2pi/3 --> \frac{2\pi}{3}=\frac{120}{360}*2\pi{r} --> r=1, the same as above. Sufficient.
 1   2   
Moderator:
Math Expert
102612 posts