Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: For how many ordered pairs (x , y) that are solutions of the [#permalink]

Show Tags

24 May 2007, 10:17

2

This post received KUDOS

1

This post was BOOKMARKED

2x + y = 12

|y| <= 12 means that y can be anything between 12 and -12 inclusive. Absolute values always indicates a range of numbers... this is the easy way to think about abs. values.

Ok, now you've narrowed down the answer choices to 25 possible numbers... which doesn't help you with the answers given. Next you need to find a way of eliminating more answer choices...

Simplify 2x + y = 12 to

x + y/2 = 3

Now looking at that, you know y has to be an even number to yield an integer... so the initial pool of 25 numbers is now narrowed down to 13, hence the answer.

Re: For how many ordered pairs (x , y) that are solutions of the [#permalink]

Show Tags

24 May 2007, 19:57

This is a good question, coz I did not pay attention to the "(x,y) that will yield x and y to be integers" part of the question, so I was stuck with the answer being 25 and was stumped by the choices.
Good job you guys....i guess I should read the question clearly

If both x and y have to be integers, y should be an integer and hence can take any value from the set {-12, -11, -10 ... 10, 11, 12} i.e. any one of 25 values (these are 25 values -12 to -1 (12 values), 0, 1 to 12 (another 12 values)) 13 of them are even and 12 of them are odd.

\(2x + y = 12\) Every time y is even, x will be integer. e.g. y = 12, x = 0 (because x = (12 - even)/2 will be an integer) Every time y is odd, x will be non-integer e.g. y = 1, x = 5.5 (because x = (12 - odd)/2 will not be an integer)

Therefore, for 13 values, x and y both will be integers.
_________________

152. For how many ordered pairs (x , y) that are solutions of the system above are x and y both integers? A. 7 B. 10 C. 12 D. 13 E. 14

Given: \(-12\leq{y}\leq{12}\) and \(2x+y=12\) --> \(y=12-2x=2(6-x)=even\), (as \(x\) must be an integer). Now, there are 13 even numbers in the range from -12 to 12, inclusive each of which will give an integer value of \(x\).

Re: For how many ordered pairs (x , y) that are solutions of the [#permalink]

Show Tags

07 Sep 2011, 00:04

10

This post received KUDOS

2

This post was BOOKMARKED

Balvinder wrote:

2x + y = 12 |y| <= 12

For how many ordered pairs (x , y) that are solutions of the system above are x and y both integers? A. 7 B. 10 C. 12 D. 13 E. 14

|y| <= 12 -12<=y<=12

2x + y = 12 x=(12-y)/2

To find number of integer pairs, we just need to find even number of y's, because even y will make "(12-y)" even as well and only even numbers divide by 2 evenly to give an integer.

e.g. x=(12-y)/2; for y=1; x=(12-1)/2=11/2=5.5(Not an integer because y is odd) x=(12-y)/2; for y=0; x=(12-0)/2=12/2=6(An integer because y is even)

Thus, if we find the number of even y's, we should be good.

-12<=y<=12 What is the first even number greater than or equal to -12? -12 What is the last even number smaller than or equal to +12? +12

Re: For how many ordered pairs (x , y) that are solutions of the [#permalink]

Show Tags

07 Sep 2012, 00:22

Hi Karishma

Using the number properties this indeed is very convenient to solve. I was wondering can we substitute y = 12 - 2x in the inequality and solve for the possible values of x.

Using the number properties this indeed is very convenient to solve. I was wondering can we substitute y = 12 - 2x in the inequality and solve for the possible values of x.

Certainly and it is quick too.

y = 12 - 2x Whenever x is an integer, y will be an integer. So if we can solve for integral values of x, the number of values we get will be the number of solutions.

Re: For how many ordered pairs (x , y) that are solutions of the [#permalink]

Show Tags

05 Jul 2013, 03:54

3

This post received KUDOS

\(y=12-2x=2*(6-x).\) Since \(|y| \leq 12 , -12 \leq y \leq 12\) . Substituting for y from above, \(-6 \leq (6-x) \leq 6.\). This reduces to \(x \geq 0\) and \(x \leq 12.\) Including 0 and 12 there are thus 13 integer solutions. Answer is (d)

For how many ordered pairs (x , y) that are solutions of the system above are x and y both integers?

A. 7 B. 10 C. 12 D. 13 E. 14

Given: \(-12\leq{y}\leq{12}\) and \(2x+y=12\) --> \(y=12-2x=2(6-x)=even\), (as \(x\) must be an integer). Now, there are 13 even numbers in the range from -12 to 12, inclusive each of which will give an integer value of \(x\).

Re: For how many ordered pairs (x , y) that are solutions of the [#permalink]

Show Tags

12 Apr 2016, 00:23

tonebeeze wrote:

\(2x + y = 12\) \(|y| \leq 12\)

For how many ordered pairs (x, y) that are solutions of the system above are x and y both integers?

A. 7 B. 10 C. 12 D. 13 E. 14

|y| <= 12 means range of y is -12 <= Y <= +12. which means Y can take any of the value in the set (-12, -11, -10......-1,0,1.....10,11,12).

now that we are given 2x + y = 12, y = 12 - 2x

we can include all the integer values for X as a solution for y = 12 - 2x as long as y falls in the above range mentioned. Such values of X are (0,1,2....12). 13 is the count for this set. Answer is D.
_________________