GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Jun 2018, 01:02

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many diagonals does a regular 11 -sided polygon contain?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 46064
How many diagonals does a regular 11 -sided polygon contain? [#permalink]

Show Tags

New post 23 Nov 2016, 06:57
1
8
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

63% (00:40) correct 37% (01:04) wrong based on 276 sessions

HideShow timer Statistics

Expert Post
Top Contributor
1 KUDOS received
CEO
CEO
User avatar
P
Joined: 12 Sep 2015
Posts: 2557
Location: Canada
Re: How many diagonals does a regular 11 -sided polygon contain? [#permalink]

Show Tags

New post 23 Nov 2016, 07:14
1
Top Contributor
2
Bunuel wrote:
How many diagonals does a regular 11-sided polygon contain?

A. 35

B. 38

C. 40

D. 44

E. 55


A nice/fast approach that doesn't involve any counting techniques is to recognize that, for each of the 11 points (vertices), there are 8 possible points that we can connect to to create a diagonal.

ASIDE: there are 8 possible points because we cannot create a diagonal by connecting 2 adjacent points.
So, there are 8 possible diagonals for each of the 11 points
These means that there are 88 possible diagonals in total (8x11=88).
However, we need to recognize that this method counts each diagonal twice. For example, it counts the diagonal AB and the diagonal BA as 2 separate diagonals.

So, to account for this duplication, we'll divide 88 by 2 to get 44
Answer:

Cheers,
Brent
_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

4 KUDOS received
Director
Director
User avatar
V
Status: Preparing for GMAT
Joined: 25 Nov 2015
Posts: 657
Location: India
GPA: 3.64
GMAT ToolKit User Premium Member Reviews Badge CAT Tests
Re: How many diagonals does a regular 11 -sided polygon contain? [#permalink]

Show Tags

New post 23 Nov 2016, 10:09
4
1
11-sided polygon contains 11 vertices which can be joined with each other in 11C2 ways=55 ways.
But this includes the sides of the polygon also, hence subtracting 11, gives 44.
Answer D.

If u liked my post, please press kudos!

_________________

Please give kudos, if you like my post

When the going gets tough, the tough gets going...

4 KUDOS received
Board of Directors
User avatar
G
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 3501
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User Premium Member
Re: How many diagonals does a regular 11 -sided polygon contain? [#permalink]

Show Tags

New post 23 Nov 2016, 11:21
4
3
Bunuel wrote:
How many diagonals does a regular 11-sided polygon contain?

A. 35

B. 38

C. 40

D. 44

E. 55


No of Diagonals of a Polygon = \(\frac{n(n - 3)}{2}\)

No of Diagonals of a Polygon = \(\frac{11(11 - 3)}{2}\)

No of Diagonals of a Polygon = \(44\)

Hence, answer will be (D) 44

_________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

1 KUDOS received
Manager
Manager
avatar
B
Joined: 02 Jul 2016
Posts: 110
Re: How many diagonals does a regular 11 -sided polygon contain? [#permalink]

Show Tags

New post 28 Nov 2016, 06:48
1
Straight 15 second answer!!!!!!!!!!!!!!!!!
Its D i.e. 44

The formula for the number of diagonals for an n sided polygon is represented as nC2-n
where n represents the number of sides of the polygon

Here, n=11
so by placing the value of n we get the number of diagonals as 44
Expert Post
2 KUDOS received
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2570
Re: How many diagonals does a regular 11 -sided polygon contain? [#permalink]

Show Tags

New post 02 Dec 2016, 06:56
2
Bunuel wrote:
How many diagonals does a regular 11-sided polygon contain?

A. 35

B. 38

C. 40

D. 44

E. 55


Given a vertex, in order to form a diagonal, we need to choose a vertex other than the vertex itself and the two adjacent vertices; thus, we have 8 possibilities for a diagonal from any given vertex. This idea is true for all 11 vertices; however, we must divide out the overlap since each diagonal is counted twice.

Thus, the number of diagonals created from an 11-sided polygon is (11 x 8) / 2 = 44 diagonals.

Answer: D
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern
Intern
avatar
Joined: 16 Jul 2016
Posts: 2
Re: How many diagonals does a regular 11 -sided polygon contain? [#permalink]

Show Tags

New post 02 Dec 2016, 07:24
No. of diagonals of a regular n sided polygon is nc2-n

Sent from my Lenovo A7010a48 using GMAT Club Forum mobile app
1 KUDOS received
Intern
Intern
avatar
B
Joined: 15 Oct 2016
Posts: 31
Re: How many diagonals does a regular 11 -sided polygon contain? [#permalink]

Show Tags

New post 03 Mar 2018, 23:12
1
Bunuel wrote:
How many diagonals does a regular 11-sided polygon contain?

A. 35

B. 38

C. 40

D. 44

E. 55


Approach 1: Excluding the side lengths from the total line segments = nc2 - n

Approach 2: Every vertex can yield n-3 diagonals (excluding itself and two adjacent points). So, n vertices would yield n(n-3) diagonals. However, it has double counting since the diagonal from A to B is essentially the same as that from B to A. Hence, no. of unique diagonals n(n-3)/2
Re: How many diagonals does a regular 11 -sided polygon contain?   [#permalink] 03 Mar 2018, 23:12
Display posts from previous: Sort by

How many diagonals does a regular 11 -sided polygon contain?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.