GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 13 Dec 2018, 04:11

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • The winning strategy for 700+ on the GMAT

     December 13, 2018

     December 13, 2018

     08:00 AM PST

     09:00 AM PST

    What people who reach the high 700's do differently? We're going to share insights, tips and strategies from data we collected on over 50,000 students who used examPAL.
  • GMATbuster's Weekly GMAT Quant Quiz, Tomorrow, Saturday at 9 AM PST

     December 14, 2018

     December 14, 2018

     09:00 AM PST

     10:00 AM PST

    10 Questions will be posted on the forum and we will post a reply in this Topic with a link to each question. There are prizes for the winners.

How many positive five-digit integers contain the digit grouping “57”

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51167
How many positive five-digit integers contain the digit grouping “57”  [#permalink]

Show Tags

New post 23 May 2018, 05:59
1
7
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

61% (02:08) correct 39% (02:24) wrong based on 136 sessions

HideShow timer Statistics

How many positive five-digit integers contain the digit grouping “57” (in that order) at least once? For instance 30,457 and 20,574 are two such integers to include, but 30,475 and 20,754 do not meet the restrictions.

(A) 279

(B) 3,000

(C) 3,500

(D) 3,700

(E) 4,000

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
User avatar
G
Joined: 14 Feb 2018
Posts: 395
Re: How many positive five-digit integers contain the digit grouping “57”  [#permalink]

Show Tags

New post 23 May 2018, 06:06
3
1
The possibilities are 57*** , *57**, **57* and ***57.

Thus, the number of ways of doing so are - 10 * 10 * 10 + 3* 10 * 10 * 9 = 3700.

Thus, imo D.

Posted from my mobile device
RC Moderator
User avatar
D
Joined: 24 Aug 2016
Posts: 572
Location: Canada
Concentration: Entrepreneurship, Operations
GMAT 1: 630 Q48 V28
GMAT 2: 540 Q49 V16
GMAT ToolKit User Premium Member Reviews Badge CAT Tests
Re: How many positive five-digit integers contain the digit grouping “57”  [#permalink]

Show Tags

New post 23 May 2018, 06:21
Bunuel wrote:
How many positive five-digit integers contain the digit grouping “57” (in that order) at least once? For instance 30,457 and 20,574 are two such integers to include, but 30,475 and 20,754 do not meet the restrictions.

(A) 279

(B) 3,000

(C) 3,500

(D) 3,700

(E) 4,000


From The Picture 01 :

For case 01 : 3rd position can be filled in 10 ways ( available numbers 0,1,2,...9)... Similarly 4th position in 10 ways & 5th in 10 ways as well ==>Total cases= \(10*10*10 = 1000\)
For case 02 : 1st position can be filled in 9 ways ( if 0, the number is not 5-digit any more)... 4th position in 10 ways & 5th in 10 ways as well ==>Total cases= \(9*10*10 = 900\)
For case 03 : 1st position can be filled in 9 ways , 2nd position in 10 ways & 5th in 10 ways as well ==>Total cases= \(9*10*10 = 900\)
For case 04 : 1st position can be filled in 9 ways ,2nd position in 10 ways & 3rd in 10 ways as well ==>Total cases= \(9*10*10 = 900\)

Hence , the total cases are \(1000 + 900 + 900 +900 = 3700\)........ Hence I would go for option D.
Attachments

Untitled.png
Untitled.png [ 9.44 KiB | Viewed 1175 times ]


_________________

Please let me know if I am going in wrong direction.
Thanks in appreciation.

RC Moderator
User avatar
D
Joined: 24 Aug 2016
Posts: 572
Location: Canada
Concentration: Entrepreneurship, Operations
GMAT 1: 630 Q48 V28
GMAT 2: 540 Q49 V16
GMAT ToolKit User Premium Member Reviews Badge CAT Tests
Re: How many positive five-digit integers contain the digit grouping “57”  [#permalink]

Show Tags

New post 23 May 2018, 06:36
2
u1983 wrote:
Bunuel wrote:
How many positive five-digit integers contain the digit grouping “57” (in that order) at least once? For instance 30,457 and 20,574 are two such integers to include, but 30,475 and 20,754 do not meet the restrictions.

(A) 279

(B) 3,000

(C) 3,500

(D) 3,700

(E) 4,000


From The Picture 01 :

For case 01 : 3rd position can be filled in 10 ways ( available numbers 0,1,2,...9)... Similarly 4th position in 10 ways & 5th in 10 ways as well ==>Total cases= \(10*10*10 = 1000\)
For case 02 : 1st position can be filled in 9 ways ( if 0, the number is not 5-digit any more)... 4th position in 10 ways & 5th in 10 ways as well ==>Total cases= \(9*10*10 = 900\)
For case 03 : 1st position can be filled in 9 ways , 2nd position in 10 ways & 5th in 10 ways as well ==>Total cases= \(9*10*10 = 900\)
For case 04 : 1st position can be filled in 9 ways ,2nd position in 10 ways & 3rd in 10 ways as well ==>Total cases= \(9*10*10 = 900\)

Hence , the total cases are \(1000 + 900 + 900 +900 = 3700\)........ Hence I would go for option D.



Now the issue here is I have not considered a lot of cases . And thus I believe I am wrong . Experts please help.

From The Picture 'Cases Open for Discussion :

For case 01 : 3rd position can be filled in 10 ways ( available numbers 0,1,2,...9)... Similarly 4th position in 10 ways & 5th in 10 ways as well ==>Total cases= \(10*10*10 = 1000\).............. from here we need to exclude the cases where 57 at 3rd & 4th and 57 at 4th & 5th as these are to be considered at case 03 & case 04.
A. 57 at 3rd & 4th while 57 at 1st & 2nd = 10 ( 5th position can be filled with 0,1,....9 ==>10 ways)
B. 57 at 4th & 5th while 57 at 1st & 2nd = 10 ( 3rd position can be filled with 0,1,....9 ==>10 ways)
For case 02 : 1st position can be filled in 9 ways ( if 0, the number is not 5-digit any more)... 4th position in 10 ways & 5th in 10 ways as well ==>Total cases= \(9*10*10 = 900\).............. from here we need to exclude the case where 57 at 4th & 5th as these are to be considered at case 04.
C. 57 at 4th & 5th while 57 at 2nd & 3rd = 9 ( 1st position can be filled with 1,....9 ==>9 ways)
For case 03 : 1st position can be filled in 9 ways , 2nd position in 10 ways & 5th in 10 ways as well ==>Total cases= \(9*10*10 = 900\)
For case 04 : 1st position can be filled in 9 ways ,2nd position in 10 ways & 3rd in 10 ways as well ==>Total cases= \(9*10*10 = 900\)

Hence , the total overlapping cases are \(1000 + 900 + 900 +900 = 3700\)
Hence , the total overlapped cases are \(A + B + C = 10 + 10 + 9 =29\)
Hence total Unique cases : \(3700-29 = 3671\)............................................Might be the desired answer Please correct me if I am wrong
_________________

Please let me know if I am going in wrong direction.
Thanks in appreciation.

Manager
Manager
User avatar
S
Joined: 04 Dec 2016
Posts: 100
Re: How many positive five-digit integers contain the digit grouping “57”  [#permalink]

Show Tags

New post 24 May 2018, 22:56
Bunuel wrote:
How many positive five-digit integers contain the digit grouping “57” (in that order) at least once? For instance 30,457 and 20,574 are two such integers to include, but 30,475 and 20,754 do not meet the restrictions.

(A) 279

(B) 3,000

(C) 3,500

(D) 3,700

(E) 4,000


Possible combinations,

1) _, _, _, 57: first position can only be filled with numbers 1 to 9, 2nd with 0 to 9, similarly 3rd with 0 to 9, total arrangements - 9 X 10 X 10 = 900
2) _, _, 57, _: first position can only be filled with numbers 1 to 9, 2nd with 0 to 9, similarly 5th with 0 to 9, total arrangements - 9 X 10 X 10 = 900
3) _, 57, _, _: first position can only be filled with numbers 1 to 9, 4th with 0 to 9, similarly 5th with 0 to 9, total arrangements - 9 X 10 X 10 = 900
4)57, _, _, _: 3rd position can be filled with numbers 0 to 9, 4th with 0 to 9, similarly 5th with 0 to 9, total arrangements - 10 X 10 X 10 = 1000

Total possible arrangements = (3x900) + 1000 = 3700
Veritas Prep and Orion Instructor
User avatar
S
Joined: 26 Jul 2010
Posts: 327
Re: How many positive five-digit integers contain the digit grouping “57”  [#permalink]

Show Tags

New post 25 May 2018, 14:38
2
Top Contributor
I absolutely love this problem, but I agree with u1983 that the OA double counts some options (and you nailed the way to account for that and get to 3671. Visually, we have to subtract out:

57X57 (there are 10 values of X as a hundreds digit where this would happen)

5757X (there are 10 values of X as a units digit where this would happen)

X5757 (there are 9 values of X as a ten-thousands digit where this would happen, since you can't start with 0)

So that's the 29 options that are double counted.
_________________

Brian

Curriculum Developer, Instructor, and Host of Veritas Prep On Demand

Save $100 on live Veritas Prep GMAT Courses and Admissions Consulting

Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Director
Director
User avatar
P
Joined: 08 Jun 2013
Posts: 515
Location: India
Schools: INSEAD Jan '19
GMAT 1: 200 Q1 V1
GPA: 3.82
WE: Engineering (Other)
GMAT ToolKit User Premium Member
Re: How many positive five-digit integers contain the digit grouping “57”  [#permalink]

Show Tags

New post 21 Aug 2018, 07:00
Bunuel wrote:
How many positive five-digit integers contain the digit grouping “57” (in that order) at least once? For instance 30,457 and 20,574 are two such integers to include, but 30,475 and 20,754 do not meet the restrictions.

(A) 279

(B) 3,000

(C) 3,500

(D) 3,700

(E) 4,000


"57" need to be treated as a group.

So We can consider that we require 4 digit number where one digit is group "57". Say Y represents that digit --> Y = "57"

Required number XXXY.

First digit can be selected in 10 ways. Same goes for 2 and 3 digit selection of required 4 digit number and digit Y can take 4 places.

i.e. YXXX , XYXX, XXYX, XXXY

so total 10*10*10*4 = 4000 such numbers.

But if the first digit is 0 then we don't have 5 digit number ( 4 digit number as per our working).

So let's subtract such cases.

0XXY or 0XYX or 0XXY

10 selections each for 2 X's and Y can take 3 places.

So total 10*10*3 = 300 cases.

Required answer = 4000 - 300 = 3700.

Option - D
_________________

It seems Kudos button not working correctly with all my posts...

Please check if it is working with this post......

is it?....

Anyways...Thanks for trying :cool:

GMATH Teacher
User avatar
G
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 536
Re: How many positive five-digit integers contain the digit grouping “57”  [#permalink]

Show Tags

New post 02 Nov 2018, 16:47
Bunuel wrote:
How many positive five-digit integers contain the digit grouping “57” (in that order) at least once? For instance 30,457 and 20,574 are two such integers to include, but 30,475 and 20,754 do not meet the restrictions.

(A) 279

(B) 3,000

(C) 3,500

(D) 3,700

(E) 4,000

\(?\,\,:\,\,5{\rm{ - digit}}\,\,{\rm{positive}}\,\,{\rm{integers}}\,\,{\rm{with}}\,\,57{\rm{ - block}}\left( {\rm{s}} \right)\)

There are double-counting´s to be dealt with!

\(\eqalign{
& \left( {\rm{1}} \right)\,\,\,\underline 5 \,\,\, \underline 7 \,\,\, \underline {} \,\,\, \underline {} \,\,\, \underline {} \,\,\,\,\, \to \,\,\,\,{10^3}\,\,{\rm{ways}} \,\, \cr
& \left( {\rm{2}} \right)\,\,\,\underline {{\rm{not}}\,0} \,\,\, \underline 5 \,\,\, \underline 7 \,\,\, \underline {} \,\,\, \underline {} \,\,\,\,\, \to \,\,\,\,9 \cdot {10^2}\,\,{\rm{ways}} \,\, \cr
& \left. \matrix{
\left( {\rm{3}} \right)\,\,\,\underline {{\rm{not}}\,0} \,\,\, \underline {} \,\,\, \underline 5 \,\,\, \underline 7 \,\,\, \underline {} \,\,\,\,\, \to \,\,\,\,9 \cdot {10^2}\,\,{\rm{ways}} \hfill \cr
\left( - \right)\,\,\,\underline {\rm{5}} \,\,\, \underline 7 \,\,\, \underline 5 \,\,\, \underline 7 \,\,\, \underline {} \,\,\,\,\, \to \,\,\,\,10\,\,{\rm{ways}} \hfill \cr} \right\}\,\,\,\, \to \,\,\,\,\,890\,\,{\rm{ways}} \,\, \cr
& \left. \matrix{
\left( {\rm{4}} \right)\,\,\,\underline {{\rm{not}}\,0} \,\,\, \underline {} \,\,\, \underline {} \,\,\, \underline 5 \,\,\, \underline 7 \,\,\,\,\, \to \,\,\,\,9 \cdot {10^2}\,\,{\rm{ways}} \hfill \cr
\left( - \right)\,\,\,\underline {{\rm{not}}\,0} \,\,\, \underline 5 \,\,\, \underline 7 \,\,\, \underline 5 \,\,\, \underline 7 \,\,\,\,\, \to \,\,\,\,9\,\,{\rm{ways}} \hfill \cr
\left( - \right)\,\,\,\underline 5 \,\,\, \underline 7 \,\,\, \underline {} \,\,\, \underline 5 \,\,\, \underline 7 \,\,\,\,\, \to \,\,\,\,10\,\,{\rm{ways}} \hfill \cr} \right\}\,\,\,\, \to \,\,\,\,\,881\,\,{\rm{ways}} \cr}\)


\(? = 1000 + 900 + 890 + 881 = 3671\)


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________

Fabio Skilnik :: https://GMATH.net (Math for the GMAT) or GMATH.com.br (Portuguese version)
Course release PROMO : finish our test drive till 30/Dec with (at least) 50 correct answers out of 92 (12-questions Mock included) to gain a 50% discount!

GMAT Club Bot
Re: How many positive five-digit integers contain the digit grouping “57” &nbs [#permalink] 02 Nov 2018, 16:47
Display posts from previous: Sort by

How many positive five-digit integers contain the digit grouping “57”

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.