It is currently 19 Feb 2018, 09:49

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many such positive integers exist so that if the unit digit of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

3 KUDOS received
Manager
Manager
User avatar
S
Joined: 23 Dec 2016
Posts: 65
Schools: Fuqua
GMAT 1: 720 Q49 V40
GPA: 3.33
GMAT ToolKit User Premium Member Reviews Badge CAT Tests
How many such positive integers exist so that if the unit digit of the [#permalink]

Show Tags

New post 23 Jun 2017, 07:34
3
This post received
KUDOS
4
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

59% (01:40) correct 41% (01:40) wrong based on 148 sessions

HideShow timer Statistics

How many such positive integers exist so that if the unit digit of the original integer is removed, the ratio of the new number to the original one becomes \(\frac{1}{14}\) ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
[Reveal] Spoiler: OA

_________________

If you find my solution useful, hit the "Kudos" button

2 KUDOS received
Intern
Intern
avatar
B
Joined: 02 Jun 2017
Posts: 1
Re: How many such positive integers exist so that if the unit digit of the [#permalink]

Show Tags

New post 23 Jun 2017, 08:37
2
This post received
KUDOS
2
This post was
BOOKMARKED
You should start by translating the problem to symbols:

old= 10r + u (i.e. r=1 u = 3 so 10*1 +3 = 13)
new= r

\(\frac{new}{old} = \frac{1}{14}\) so:

\(\frac{10r + u}{r} = \frac{1}{14}\)

which simplifies to: \(4r = u\)

now we can list posible solutions starting:

\(r=1 => u = 4\)
\(r=2 => u = 8\)
\(r=3 => u = 12\) wrong because u is unit number so must be smaller or equal to 9

hence we have 2 solutions
Director
Director
avatar
G
Joined: 07 Dec 2014
Posts: 906
How many such positive integers exist so that if the unit digit of the [#permalink]

Show Tags

New post 23 Jun 2017, 10:57
Vardan95 wrote:
How many such positive integers exist so that if the unit digit of the original integer is removed, the ratio of the new number to the original one becomes \(\frac{1}{14}\) ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4


let x=tens digit
y=units digit
(10x+y)/x=14
4x=y
y must be a one digit multiple of 4, either 4 or 8
x must be either 1 or 2
(10*1+4)/1=14
(20*1+8)/2=14
14 and 28 are 2 positive integers
C
Manager
Manager
User avatar
B
Joined: 23 May 2017
Posts: 201
Concentration: Finance, Accounting
WE: Programming (Energy and Utilities)
CAT Tests
Re: How many such positive integers exist so that if the unit digit of the [#permalink]

Show Tags

New post 23 Jun 2017, 11:16
The original number must be a multiple of 14..

14, 28, 42, 56, ....

let's start converting
= \(\frac{1}{14}\)( dropping 4 from 14) = \(\frac{1}{14}\) = solution
= \(\frac{2}{28}\)( dropping 2 from 28) = \(\frac{1}{14}\) = solution
= \(\frac{4}{42}\)( dropping 4 from 42) = \(\frac{2}{21}\) = Not a solution
= \(\frac{5}{56}\)( dropping 5 from 56) = \(\frac{5}{56}\) = Not a solution

so the denominator must be a multiple of numerator which is not possible as we proceed further : hence only 2 solution
_________________

If you like the post, please award me Kudos!! It motivates me

Manager
Manager
avatar
B
Joined: 02 Feb 2016
Posts: 89
GMAT 1: 690 Q43 V41
Re: How many such positive integers exist so that if the unit digit of the [#permalink]

Show Tags

New post 10 Aug 2017, 13:17
lbowl wrote:
You should start by translating the problem to symbols:

old= 10r + u (i.e. r=1 u = 3 so 10*1 +3 = 13)
new= r

\(\frac{new}{old} = \frac{1}{14}\) so:

\(\frac{10r + u}{r} = \frac{1}{14}\)

which simplifies to: \(4r = u\)

now we can list posible solutions starting:

\(r=1 => u = 4\)
\(r=2 => u = 8\)
\(r=3 => u = 12\) wrong because u is unit number so must be smaller or equal to 9

hence we have 2 solutions


Haven't you reversed the old/new when applying the ratio?
Expert Post
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7938
Location: Pune, India
Re: How many such positive integers exist so that if the unit digit of the [#permalink]

Show Tags

New post 10 Aug 2017, 22:45
Expert's post
1
This post was
BOOKMARKED
Vardan95 wrote:
How many such positive integers exist so that if the unit digit of the original integer is removed, the ratio of the new number to the original one becomes \(\frac{1}{14}\) ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4


The given ratio is 1/14. This is a solution. If the units digit of 14 is removed, we get 1. Let's look at the multiples of this ratio.
2/28 - Solution
3/42
4/56
5/70
6/84
7/98
8/112
...

Note the pattern. In the denominator, if you remove the units digit, the gap between what you get and the numerator is increasing. So you will not have another solution.

Answer (C)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Re: How many such positive integers exist so that if the unit digit of the   [#permalink] 10 Aug 2017, 22:45
Display posts from previous: Sort by

How many such positive integers exist so that if the unit digit of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.