GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 18 Jan 2019, 14:29

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
• Free GMAT Strategy Webinar

January 19, 2019

January 19, 2019

07:00 AM PST

09:00 AM PST

Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
• FREE Quant Workshop by e-GMAT!

January 20, 2019

January 20, 2019

07:00 AM PST

07:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

How many words can be formed by taking 4 letters at a time

Author Message
TAGS:

Hide Tags

Manager
Joined: 29 Dec 2009
Posts: 66
Location: india
How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

14 Apr 2010, 04:33
1
15
00:00

Difficulty:

(N/A)

Question Stats:

50% (01:38) correct 50% (01:01) wrong based on 45 sessions

HideShow timer Statistics

How many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS.
Math Expert
Joined: 02 Sep 2009
Posts: 52285
Re: tough p n c  [#permalink]

Show Tags

14 Apr 2010, 05:45
8
14
jatt86 wrote:
1) how many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS.

There are 8 distinct letters: M-A-T-H-E-I-C-S. 3 letters M, A, and T are represented twice (double letter).

Selected 4 letters can have following 3 patterns:

1. abcd - all 4 letters are different:
$$8P4=1680$$ (choosing 4 distinct letters out of 8, when order matters) or $$8C4*4!=1680$$ (choosing 4 distinct letters out of 8 when order does not matter and multiplying by 4! to get different arrangement of these 4 distinct letters);

2. aabb - from 4 letters 2 are the same and other 2 are also the same:
$$3C2*\frac{4!}{2!2!}=18$$ - 3C2 choosing which two double letter will provide two letters (out of 3 double letter - MAT), multiplying by $$\frac{4!}{2!2!}$$ to get different arrangements (for example MMAA can be arranged in $$\frac{4!}{2!2!}$$ # of ways);

3. aabc - from 4 letters 2 are the same and other 2 are different:
$$3C1*7C2*\frac{4!}{2!}=756$$ - 3C1 choosing which letter will proved with 2 letters (out of 3 double letter - MAT), 7C2 choosing third and fourth letters out of 7 distinct letters left and multiplying by $$\frac{4!}{2!}$$ to get different arrangements (for example MMIC can be arranged in $$\frac{4!}{2!}$$ # of ways).

1680+18+756=2454

_________________
General Discussion
Intern
Joined: 07 Apr 2010
Posts: 21
Re: tough p n c  [#permalink]

Show Tags

14 Apr 2010, 06:40
a very similar question:
Find the no: of 4 letter words that can be formed from the string "AABBBBCC" ?

Here we have 3 distinct letters(A,B,C) & 4 slots to fill. What logic do you use to solve this problem?
_________________

GMAT, here i come...

impressed?...how bout encouraging me with a kudos

cheers
just another idiot!

Math Expert
Joined: 02 Sep 2009
Posts: 52285
Re: tough p n c  [#permalink]

Show Tags

14 Apr 2010, 07:01
3
2
idiot wrote:
a very similar question:
Find the no: of 4 letter words that can be formed from the string "AABBBBCC" ?

Here we have 3 distinct letters(A,B,C) & 4 slots to fill. What logic do you use to solve this problem?

Three patterns:

1. XXXX - only BBBB, so 1
2. XXYY - 3C2(choosing which will take the places of X and Y from A, B and C)*4!/2!2!(arranging)=18
3. XXYZ - 3C1(choosing which will take the place of X from A, B and C)*4!/2!(arranging)=36
4. XXXY - 2C1(choosing which will take the place of Y from A and C, as X can be only B)*4!/3!(arranging)=8

1+18+36+8=63
_________________
Intern
Joined: 07 Apr 2010
Posts: 21
Re: tough p n c  [#permalink]

Show Tags

14 Apr 2010, 10:41
1
thanks a ton, bunuel
_________________

GMAT, here i come...

impressed?...how bout encouraging me with a kudos

cheers
just another idiot!

Manager
Joined: 21 Mar 2010
Posts: 94
Re: tough p n c  [#permalink]

Show Tags

15 Apr 2010, 06:20
I'm usually not bad with anagram problems like this but the term "words" threw me off completely.
For some reason I assumed the combination of letters had to combine to make sense, i.e. a "word".

MTHE - is hardly a word, so i started counting actual "words"... so obviously completely bombed the question!
Manager
Joined: 14 Nov 2011
Posts: 122
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)
Re: tough p n c  [#permalink]

Show Tags

25 May 2013, 17:50
Bunuel wrote:
jatt86 wrote:
1) how many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS.

There are 8 distinct letters: M-A-T-H-E-I-C-S. 3 letters M, A, and T are represented twice (double letter).

Selected 4 letters can have following 3 patterns:

1. abcd - all 4 letters are different:
$$8P4=1680$$ (choosing 4 distinct letters out of 8, when order matters) or $$8C4*4!=1680$$ (choosing 4 distinct letters out of 8 when order does not matter and multiplying by 4! to get different arrangement of these 4 distinct letters);

2. aabb - from 4 letters 2 are the same and other 2 are also the same:
$$3C2*\frac{4!}{2!2!}=18$$ - 3C2 choosing which two double letter will provide two letters (out of 3 double letter - MAT), multiplying by $$\frac{4!}{2!2!}$$ to get different arrangements (for example MMAA can be arranged in $$\frac{4!}{2!2!}$$ # of ways);

3. aabc - from 4 letters 2 are the same and other 2 are different:
$$3C1*7C2*\frac{4!}{2!}=756$$ - 3C1 choosing which letter will proved with 2 letters (out of 3 double letter - MAT), 7C2 choosing third and fourth letters out of 7 distinct letters left and multiplying by $$\frac{4!}{2!}$$ to get different arrangements (for example MMIC can be arranged in $$\frac{4!}{2!}$$ # of ways).

1680+18+756=2454

Hi Bunnel,
Is this a GMAT worthy question?
Math Expert
Joined: 02 Sep 2009
Posts: 52285
Re: tough p n c  [#permalink]

Show Tags

26 May 2013, 03:13
cumulonimbus wrote:
Bunuel wrote:
jatt86 wrote:
1) how many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS.

There are 8 distinct letters: M-A-T-H-E-I-C-S. 3 letters M, A, and T are represented twice (double letter).

Selected 4 letters can have following 3 patterns:

1. abcd - all 4 letters are different:
$$8P4=1680$$ (choosing 4 distinct letters out of 8, when order matters) or $$8C4*4!=1680$$ (choosing 4 distinct letters out of 8 when order does not matter and multiplying by 4! to get different arrangement of these 4 distinct letters);

2. aabb - from 4 letters 2 are the same and other 2 are also the same:
$$3C2*\frac{4!}{2!2!}=18$$ - 3C2 choosing which two double letter will provide two letters (out of 3 double letter - MAT), multiplying by $$\frac{4!}{2!2!}$$ to get different arrangements (for example MMAA can be arranged in $$\frac{4!}{2!2!}$$ # of ways);

3. aabc - from 4 letters 2 are the same and other 2 are different:
$$3C1*7C2*\frac{4!}{2!}=756$$ - 3C1 choosing which letter will proved with 2 letters (out of 3 double letter - MAT), 7C2 choosing third and fourth letters out of 7 distinct letters left and multiplying by $$\frac{4!}{2!}$$ to get different arrangements (for example MMIC can be arranged in $$\frac{4!}{2!}$$ # of ways).

1680+18+756=2454

Hi Bunnel,
Is this a GMAT worthy question?

No, but this question is good to practice.
_________________
Intern
Joined: 22 Mar 2013
Posts: 11
Re: tough p n c  [#permalink]

Show Tags

02 Jul 2013, 10:45
Bunuel wrote:
jatt86 wrote:
1) how many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS.

There are 8 distinct letters: M-A-T-H-E-I-C-S. 3 letters M, A, and T are represented twice (double letter).

Selected 4 letters can have following 3 patterns:

1. abcd - all 4 letters are different:
$$8P4=1680$$ (choosing 4 distinct letters out of 8, when order matters) or $$8C4*4!=1680$$ (choosing 4 distinct letters out of 8 when order does not matter and multiplying by 4! to get different arrangement of these 4 distinct letters);

2. aabb - from 4 letters 2 are the same and other 2 are also the same:
$$3C2*\frac{4!}{2!2!}=18$$ - 3C2 choosing which two double letter will provide two letters (out of 3 double letter - MAT), multiplying by $$\frac{4!}{2!2!}$$ to get different arrangements (for example MMAA can be arranged in $$\frac{4!}{2!2!}$$ # of ways);

3. aabc - from 4 letters 2 are the same and other 2 are different:
$$3C1*7C2*\frac{4!}{2!}=756$$ - 3C1 choosing which letter will proved with 2 letters (out of 3 double letter - MAT), 7C2 choosing third and fourth letters out of 7 distinct letters left and multiplying by $$\frac{4!}{2!}$$ to get different arrangements (for example MMIC can be arranged in $$\frac{4!}{2!}$$ # of ways).

1680+18+756=2454

Bunuel, this is a damn hard question and I find myself not fully able to understand your logic. I am from a very weak background but I have poured through all of the MGMAT math books (excluding the advanced one) several times and still find myself unable to intutively figure out the steps to this problem.

What extra review would you suggest so I can be able to at least follow your solutions to these answers?
Math Expert
Joined: 02 Sep 2009
Posts: 52285
Re: tough p n c  [#permalink]

Show Tags

02 Jul 2013, 11:21
tmipanthers wrote:
Bunuel wrote:
jatt86 wrote:
1) how many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS.

There are 8 distinct letters: M-A-T-H-E-I-C-S. 3 letters M, A, and T are represented twice (double letter).

Selected 4 letters can have following 3 patterns:

1. abcd - all 4 letters are different:
$$8P4=1680$$ (choosing 4 distinct letters out of 8, when order matters) or $$8C4*4!=1680$$ (choosing 4 distinct letters out of 8 when order does not matter and multiplying by 4! to get different arrangement of these 4 distinct letters);

2. aabb - from 4 letters 2 are the same and other 2 are also the same:
$$3C2*\frac{4!}{2!2!}=18$$ - 3C2 choosing which two double letter will provide two letters (out of 3 double letter - MAT), multiplying by $$\frac{4!}{2!2!}$$ to get different arrangements (for example MMAA can be arranged in $$\frac{4!}{2!2!}$$ # of ways);

3. aabc - from 4 letters 2 are the same and other 2 are different:
$$3C1*7C2*\frac{4!}{2!}=756$$ - 3C1 choosing which letter will proved with 2 letters (out of 3 double letter - MAT), 7C2 choosing third and fourth letters out of 7 distinct letters left and multiplying by $$\frac{4!}{2!}$$ to get different arrangements (for example MMIC can be arranged in $$\frac{4!}{2!}$$ # of ways).

1680+18+756=2454

Bunuel, this is a damn hard question and I find myself not fully able to understand your logic. I am from a very weak background but I have poured through all of the MGMAT math books (excluding the advanced one) several times and still find myself unable to intutively figure out the steps to this problem.

What extra review would you suggest so I can be able to at least follow your solutions to these answers?

This question is out of the scope of the GMAT, so I wouldn't worry about it too much.

As for the recommendations.

Best GMAT Books: best-gmat-math-prep-books-reviews-recommendations-77291.html

Theory on Combinations: math-combinatorics-87345.html

DS questions on Combinations: search.php?search_id=tag&tag_id=31
PS questions on Combinations: search.php?search_id=tag&tag_id=52

Tough and tricky questions on Combinations: hardest-area-questions-probability-and-combinations-101361.html

Hope it helps.
_________________
Intern
Joined: 27 Mar 2013
Posts: 42
Location: United States
Concentration: Strategy, Entrepreneurship
GMAT 1: 710 Q48 V40
GPA: 3.25
WE: General Management (Energy and Utilities)
Re: How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

24 Mar 2014, 12:36
If this would have been a word with three of the same letter I'm assuming you would have more than 3 combinations?

Thanks!
Math Expert
Joined: 02 Sep 2009
Posts: 52285
Re: How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

25 Mar 2014, 01:43
Mbearmann wrote:
If this would have been a word with three of the same letter I'm assuming you would have more than 3 combinations?

Thanks!

Yes, we would have one more combination {a, a, a, b}.
_________________
Intern
Joined: 04 Apr 2015
Posts: 16
Concentration: Human Resources, Healthcare
GMAT Date: 08-06-2015
GPA: 3.83
WE: Editorial and Writing (Journalism and Publishing)
Re: How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

10 Jul 2015, 10:44
I can't understand this question. Why is this a combination question and not permutation? isnt it asking for arrangements?
CEO
Joined: 20 Mar 2014
Posts: 2638
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

10 Jul 2015, 11:03
1
ddg wrote:
I can't understand this question. Why is this a combination question and not permutation? isnt it asking for arrangements?

You are half right.

Permutations = Combinations * n! (where n is the number of 'elements'). In this question, you first need to select the letters out of the given one (combination implied as selection = combination!!) and only after you have selected the letters , you can look at the arrangements. You can not directly go to arrangements as you need to follow the 2 step process:

1. Choose 4 out of 11 letters
2. Arrangement of those selections of 4 letters to get all the possible arrangements.

Your approach would have been correct, had the question ask us to arrange all of these 11 letters into words of 11 letters or if all the letters were different.
Intern
Joined: 04 Apr 2015
Posts: 16
Concentration: Human Resources, Healthcare
GMAT Date: 08-06-2015
GPA: 3.83
WE: Editorial and Writing (Journalism and Publishing)
Re: How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

10 Jul 2015, 12:24
Thanks! this helped
Retired Moderator
Status: The best is yet to come.....
Joined: 10 Mar 2013
Posts: 497
Re: How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

28 Nov 2015, 11:14
Bunuel wrote:
idiot wrote:
a very similar question:
Find the no: of 4 letter words that can be formed from the string "AABBBBCC" ?

Here we have 3 distinct letters(A,B,C) & 4 slots to fill. What logic do you use to solve this problem?

Three patterns:

1. XXXX - only BBBB, so 1
2. XXYY - 3C2(choosing which will take the places of X and Y from A, B and C)*4!/2!2!(arranging)=18
3. XXYZ - 3C1(choosing which will take the place of X from A, B and C)*4!/2!(arranging)=36
4. XXXY - 2C1(choosing which will take the place of Y from A and C, as X can be only B)*4!/3!(arranging)=8

1+18+36+8=63

In 3, through 3C1 we choose 1 group of letters from A, B, and C, which will take the place of XX, but what about the remaining 2 letters YZ? One more query, if through 3C1 we choose group B, then we have 4 letters in hand unlike A and C. Doesn't it require to consider?
_________________

Hasan Mahmud

Intern
Joined: 31 Aug 2016
Posts: 46
Re: How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

06 Dec 2017, 11:36
Bunuel wrote:
jatt86 wrote:
1) how many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS.

There are 8 distinct letters: M-A-T-H-E-I-C-S. 3 letters M, A, and T are represented twice (double letter).

Selected 4 letters can have following 3 patterns:

1. abcd - all 4 letters are different:
$$8P4=1680$$ (choosing 4 distinct letters out of 8, when order matters) or $$8C4*4!=1680$$ (choosing 4 distinct letters out of 8 when order does not matter and multiplying by 4! to get different arrangement of these 4 distinct letters);

2. aabb - from 4 letters 2 are the same and other 2 are also the same:
$$3C2*\frac{4!}{2!2!}=18$$ - 3C2 choosing which two double letter will provide two letters (out of 3 double letter - MAT), multiplying by $$\frac{4!}{2!2!}$$ to get different arrangements (for example MMAA can be arranged in $$\frac{4!}{2!2!}$$ # of ways);

3. aabc - from 4 letters 2 are the same and other 2 are different:
$$3C1*7C2*\frac{4!}{2!}=756$$ - 3C1 choosing which letter will proved with 2 letters (out of 3 double letter - MAT), 7C2 choosing third and fourth letters out of 7 distinct letters left and multiplying by $$\frac{4!}{2!}$$ to get different arrangements (for example MMIC can be arranged in $$\frac{4!}{2!}$$ # of ways).

1680+18+756=2454

In (1) why you use order matters or doesn't matter to solve it? To saw two different ways to find the solution?
Intern
Joined: 13 Dec 2016
Posts: 1
Re: How many words can be formed by taking 4 letters at a time  [#permalink]

Show Tags

29 Oct 2018, 17:02
Because there's no restriction, why can't I simply take 11*10*9*8=7920?
What is wrong with this logic?
Re: How many words can be formed by taking 4 letters at a time &nbs [#permalink] 29 Oct 2018, 17:02
Display posts from previous: Sort by