jatt86
1) how many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS.
There are 8 distinct letters: M-A-T-H-E-I-C-S. 3 letters M, A, and T are represented twice (double letter).
Selected 4 letters can have following 3 patterns:
1. abcd - all 4 letters are different:
\(8P4=1680\) (choosing 4 distinct letters out of 8, when order matters) or \(8C4*4!=1680\) (choosing 4 distinct letters out of 8 when order does not matter and multiplying by 4! to get different arrangement of these 4 distinct letters);
2. aabb - from 4 letters 2 are the same and other 2 are also the same:
\(3C2*\frac{4!}{2!2!}=18\) - 3C2 choosing which two double letter will provide two letters (out of 3 double letter - MAT), multiplying by \(\frac{4!}{2!2!}\) to get different arrangements (for example MMAA can be arranged in \(\frac{4!}{2!2!}\) # of ways);
3. aabc - from 4 letters 2 are the same and other 2 are different:
\(3C1*7C2*\frac{4!}{2!}=756\) - 3C1 choosing which letter will proved with 2 letters (out of 3 double letter - MAT), 7C2 choosing third and fourth letters out of 7 distinct letters left and multiplying by \(\frac{4!}{2!}\) to get different arrangements (for example MMIC can be arranged in \(\frac{4!}{2!}\) # of ways).
1680+18+756=2454
Answer: 2454.