Last visit was: 14 Dec 2024, 02:57 It is currently 14 Dec 2024, 02:57
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Dec 2024
Posts: 97,874
Own Kudos:
685,691
 []
Given Kudos: 88,270
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,874
Kudos: 685,691
 []
Kudos
Add Kudos
15
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
chetan2u
User avatar
RC & DI Moderator
Joined: 02 Aug 2009
Last visit: 13 Dec 2024
Posts: 11,434
Own Kudos:
38,028
 []
Given Kudos: 333
Status:Math and DI Expert
Products:
Expert reply
Posts: 11,434
Kudos: 38,028
 []
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 13 Dec 2024
Posts: 19,869
Own Kudos:
24,292
 []
Given Kudos: 288
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 19,869
Kudos: 24,292
 []
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
General Discussion
avatar
maxmayr
Joined: 21 Jul 2017
Last visit: 12 Apr 2021
Posts: 12
Own Kudos:
4
 []
Given Kudos: 5
Location: Germany
GPA: 4
Posts: 12
Kudos: 4
 []
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
chetan2u
Bunuel
If \(\frac{1}{2}f(x) = f(\frac{x}{2})\), which of the following is true for all values of f(x)?


(A) \(f(x) = 2x + 2\)

(B) \(f(x) = 13x\)

(C) \(f(x) = x^2\)

(D) \(f(x) = x - 10\)

(E) \(f(x) =\sqrt{x-4}\)


the function should tell us that whenever we are adding any numeric value to x, say 10,2,1 etc, there will be no effect on f(x/2) but 1/2 f(x) will half it..
for example \(f(x) = 2x+2\) so \(\frac{1}{2} f(x) = \frac{(2x+2)}{2}=x+1\).......... BUT \(f(\frac{x}{2}) = \frac{2*x}{2}+2=x+2\)
therefore eliminate all those - A,D,E

whenever the equation is not linear, f(x/2) will change as the 2 in denominator will change by that power
for example \(f(x) = x^2...........\frac{1}{2}f(x)=\frac{x^2}{2}\) but \(f(\frac{x}{2})=\frac{x^2}{4}\)
eliminate C

if you understand teh above points, you will look for a linear x with no addition/subtraction of numeric value
such as 13x, 25x and so on

B


Thanks for the explanation but I can not understand why f(x/2) plugged in with answer choice A is ((2x)/2) +2 instead of (2x+2)/2

I somehow understand that we can't replace the x with the complete f(x) in A but I don't understand why it is done in this way.

Would you please be so kind and explain in even further detail?

Thanks in advance,
Max
avatar
owlette
Joined: 15 Sep 2018
Last visit: 22 Oct 2020
Posts: 3
Given Kudos: 28
Location: United States
GPA: 4
Posts: 3
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
maxmayr
chetan2u
Bunuel
If \(\frac{1}{2}f(x) = f(\frac{x}{2})\), which of the following is true for all values of f(x)?


(A) \(f(x) = 2x + 2\)

(B) \(f(x) = 13x\)

(C) \(f(x) = x^2\)

(D) \(f(x) = x - 10\)

(E) \(f(x) =\sqrt{x-4}\)


the function should tell us that whenever we are adding any numeric value to x, say 10,2,1 etc, there will be no effect on f(x/2) but 1/2 f(x) will half it..
for example \(f(x) = 2x+2\) so \(\frac{1}{2} f(x) = \frac{(2x+2)}{2}=x+1\).......... BUT \(f(\frac{x}{2}) = \frac{2*x}{2}+2=x+2\)
therefore eliminate all those - A,D,E

whenever the equation is not linear, f(x/2) will change as the 2 in denominator will change by that power
for example \(f(x) = x^2...........\frac{1}{2}f(x)=\frac{x^2}{2}\) but \(f(\frac{x}{2})=\frac{x^2}{4}\)
eliminate C

if you understand teh above points, you will look for a linear x with no addition/subtraction of numeric value
such as 13x, 25x and so on

B


Thanks for the explanation but I can not understand why f(x/2) plugged in with answer choice A is ((2x)/2) +2 instead of (2x+2)/2

I somehow understand that we can't replace the x with the complete f(x) in A but I don't understand why it is done in this way.

Would you please be so kind and explain in even further detail?

Thanks in advance,
Max


I was wondering the same. Would someone kindly explain this? Thank you in advance.
User avatar
chetan2u
User avatar
RC & DI Moderator
Joined: 02 Aug 2009
Last visit: 13 Dec 2024
Posts: 11,434
Own Kudos:
Given Kudos: 333
Status:Math and DI Expert
Products:
Expert reply
Posts: 11,434
Kudos: 38,028
Kudos
Add Kudos
Bookmarks
Bookmark this Post
owlette
maxmayr
chetan2u

the function should tell us that whenever we are adding any numeric value to x, say 10,2,1 etc, there will be no effect on f(x/2) but 1/2 f(x) will half it..
for example \(f(x) = 2x+2\) so \(\frac{1}{2} f(x) = \frac{(2x+2)}{2}=x+1\).......... BUT \(f(\frac{x}{2}) = \frac{2*x}{2}+2=x+2\)
therefore eliminate all those - A,D,E

whenever the equation is not linear, f(x/2) will change as the 2 in denominator will change by that power
for example \(f(x) = x^2...........\frac{1}{2}f(x)=\frac{x^2}{2}\) but \(f(\frac{x}{2})=\frac{x^2}{4}\)
eliminate C

if you understand teh above points, you will look for a linear x with no addition/subtraction of numeric value
such as 13x, 25x and so on

B


Thanks for the explanation but I can not understand why f(x/2) plugged in with answer choice A is ((2x)/2) +2 instead of (2x+2)/2

I somehow understand that we can't replace the x with the complete f(x) in A but I don't understand why it is done in this way.

Would you please be so kind and explain in even further detail?

Thanks in advance,
Max


I was wondering the same. Would someone kindly explain this? Thank you in advance.


Ok..
When f(x) = 2x+2, what will be f(2). It will be 2(2)+2=6.
So. it is only the x which gets effected...

Say \(f(\frac{x}{2}) = 2x+2\), and we are looking for f(x).
Here we will get the term of x in terms of x/2, so \(f(\frac{x}{2})=2x+2=2*x*\frac{2}{2}+2=2*2(\frac{x}{2})+2=4(\frac{x}{2})+2\)..
so f(x) will be 4x+2
Moderator:
Math Expert
97874 posts