It is currently 19 Nov 2017, 09:21

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If 5a + 7b = k, where a and b are positive integers, what is the large

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42249

Kudos [?]: 132696 [0], given: 12335

If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 30 Apr 2015, 04:12
Expert's post
13
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

34% (01:27) correct 66% (01:39) wrong based on 223 sessions

HideShow timer Statistics

If 5a + 7b = k, where a and b are positive integers, what is the largest possible value of k for which exactly one pair of integers (a, b) makes the equation true?

A. 35
B. 48
C. 69
D. 70
E. 74

Kudos for a correct solution.
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132696 [0], given: 12335

2 KUDOS received
Intern
Intern
avatar
B
Joined: 05 Dec 2014
Posts: 3

Kudos [?]: 4 [2], given: 1

Concentration: Finance, Technology
GMAT Date: 04-25-2015
Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 30 Apr 2015, 04:50
2
This post received
KUDOS
We 'll start putting the values of with a = 10 and b = 1.
Keep decreasing the value of a by 1 and increasing the value of b by 1.

At a = 10 and b = 1, 5a + 7b = 57
At a = 9 and b = 2, 5a + 7b = 59
At a = 8 and b = 3, 5a + 7b = 61

We see a pattern, for every decrease in a and every decrease in b, the result is increasing by 2.

So,
At a = 4 and b = 7, 5a + 7b = 69.

Which is option C.

Kudos [?]: 4 [2], given: 1

Intern
Intern
avatar
Joined: 02 Apr 2015
Posts: 1

Kudos [?]: [0], given: 9

If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 30 Apr 2015, 08:53
If 5a + 7b = k, where a and b are positive integers, what is the largest possible value of k for which exactly one pair of integers (a, b) makes the equation true?

a=5 & b=7 will give 25+49 = 74

Ill go with E


(edit) : just understood the "pair" funda of the question. I'll need to revise my answer after some serious thinking.

A word of advice for newcomers like me. Don't post in excitement. Think!!!

Last edited by suchetsangha on 30 Apr 2015, 12:22, edited 1 time in total.

Kudos [?]: [0], given: 9

1 KUDOS received
Intern
Intern
avatar
Joined: 10 Jul 2014
Posts: 14

Kudos [?]: 6 [1], given: 6

Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 30 Apr 2015, 09:15
1
This post received
KUDOS
c. 69
5a+7b=k
b=2
and b=7
d. 70
e. 74
b=2
b=7

i will go with d

Kudos [?]: 6 [1], given: 6

1 KUDOS received
Manager
Manager
avatar
Joined: 17 Mar 2015
Posts: 122

Kudos [?]: 55 [1], given: 4

CAT Tests
If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 30 Apr 2015, 10:25
1
This post received
KUDOS
1
This post was
BOOKMARKED
5*a1 + 7*b1 = k
5*a2 + 7*b2 = k
5*(a1 - a2) = 7*(b2 - b1)
since we are dealing with integers we can assume that a1 - a2 = 7*q and b2 - b1 = 5*q where q is integer, so whenever we get a pair for (a;b) we can find another one by simply adding 7 to "a" and subtracting 5 from "b" or vice versa, subtracting 7 from "a" and adding 5 to "b".
Lets check how it works for our numbers, starting from the largest:

E)74 = 5*12 + 7*2 (a1 = 12, b1 = 2), subtract 7 from "a" and add 5 to "b" respectively, so a2 = 5 and b2 = 7, second pair - bad
D)70 = 5*7 + 7*5 (a1 = 7, b1 = 5), if we add 7 to "a" we will have to subtract 5 from b but b can't be 0, so - no pair, if we subtract 7 from "a", we'll get a = 0 which also isn't allowed - no pair, thus this is the only pair for (a;b) that works, good!, thus
D is the answer

Kudos [?]: 55 [1], given: 4

2 KUDOS received
Director
Director
User avatar
Joined: 07 Aug 2011
Posts: 579

Kudos [?]: 546 [2], given: 75

Concentration: International Business, Technology
GMAT 1: 630 Q49 V27
GMAT ToolKit User
If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 01 May 2015, 07:04
2
This post received
KUDOS
1
This post was
BOOKMARKED
Bunuel wrote:
If 5a + 7b = k, where a and b are positive integers, what is the largest possible value of k for which exactly one pair of integers (a, b) makes the equation true?

A. 35
B. 48
C. 69
D. 70
E. 74

Kudos for a correct solution.



\(lcm (5,7)=35\)

Seven 5s can be converted to Five 7s OR Five 7s can be rewritten as Seven 5s.

But question stem tells that 'a' and 'b' are positive integers , so 'a' cannot be zero . if this is the case then we can have
5*7+ 7*5=70

We cannot have more than seven 5 .

Answer D

For those who selected E , note that unit digit is 4
we have 2 answers straightforward. .
60+14
49+25
_________________

Thanks,
Lucky

_______________________________________________________
Kindly press the Image to appreciate my post !! :-)

Kudos [?]: 546 [2], given: 75

Manager
Manager
avatar
Joined: 01 Jan 2015
Posts: 56

Kudos [?]: 3 [0], given: 7

Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 01 May 2015, 13:54
Ans D
a=7 and B=5 = 70
a=0 and B=5 or a=7 B=0 not permitted as it says 5a + 7b = k, where a and b are positive integers

Kudos [?]: 3 [0], given: 7

Intern
Intern
avatar
Joined: 24 Feb 2015
Posts: 13

Kudos [?]: [0], given: 21

GMAT 1: 570 Q37 V31
Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 04 May 2015, 03:03
Zhenek wrote:
5*a1 + 7*b1 = k
5*a2 + 7*b2 = k
5*(a1 - a2) = 7*(b2 - b1)
since we are dealing with integers we can assume that a1 - a2 = 7*q and b2 - b1 = 5*q where q is integer, so whenever we get a pair for (a;b) we can find another one by simply adding 7 to "a" and subtracting 5 from "b" or vice versa, subtracting 7 from "a" and adding 5 to "b".
Lets check how it works for our numbers, starting from the largest:

E)74 = 5*12 + 7*2 (a1 = 12, b1 = 2), subtract 7 from "a" and add 5 to "b" respectively, so a2 = 5 and b2 = 7, second pair - bad
D)70 = 5*7 + 7*5 (a1 = 7, b1 = 5), if we add 7 to "a" we will have to subtract 5 from b but b can't be 0, so - no pair, if we subtract 7 from "a", we'll get a = 0 which also isn't allowed - no pair, thus this is the only pair for (a;b) that works, good!, thus
D is the answer


Sorry, Why do you say that a1-a2=7q instead of 7((b2-b1)/5) ? and the same for b2-b1=5q ? I'm missing your assumption. are you saying that (b2-b1)/5 must be an integer and so the only way to have an integer is that that difference is a multiple of 5 ?

Thank you !

Kudos [?]: [0], given: 21

1 KUDOS received
Manager
Manager
avatar
Joined: 17 Mar 2015
Posts: 122

Kudos [?]: 55 [1], given: 4

CAT Tests
Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 04 May 2015, 03:14
1
This post received
KUDOS
Yes, that is what I mean, if the difference between values of B is not a multiple of 5 (or multiple of 7 for values A), you will never find a value for A(or respectively B) to get the same number K, I just made it simplier by taking a variable Q which is an integer

Kudos [?]: 55 [1], given: 4

Intern
Intern
avatar
Joined: 24 Feb 2015
Posts: 13

Kudos [?]: [0], given: 21

GMAT 1: 570 Q37 V31
Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 04 May 2015, 03:23
Zhenek wrote:
Yes, that is what I mean, if the difference between values of B is not a multiple of 5 (or multiple of 7 for values A), you will never find a value for A(or respectively B) to get the same number K, I just made it simplier by taking a variable Q which is an integer


Thanks a lot!

But if a1-a2=7q, and so a2=a1-7q. Why did you say plus and minus 7 ?

sorry to bother you !

Kudos [?]: [0], given: 21

Manager
Manager
avatar
Joined: 17 Mar 2015
Posts: 122

Kudos [?]: 55 [0], given: 4

CAT Tests
Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 04 May 2015, 03:25
coz q can be negative

Kudos [?]: 55 [0], given: 4

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42249

Kudos [?]: 132696 [0], given: 12335

Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 04 May 2015, 03:45
Expert's post
2
This post was
BOOKMARKED
Bunuel wrote:
If 5a + 7b = k, where a and b are positive integers, what is the largest possible value of k for which exactly one pair of integers (a, b) makes the equation true?

A. 35
B. 48
C. 69
D. 70
E. 74

Kudos for a correct solution.


MANHATTAN GMAT OFFICIAL SOLUTION:

Work Backwards from the Answers

The largest answer choice (and the largest possible value for k) is 74, so the largest possible value for b is 10. (If b were 11, then 7b would equal 77, which is too large.)

What about for a? Use similar reasoning: the largest possible value for a must be 14 because 5(14) = 70, which is less than 74.

The possibilities for b, then, are 1, 2, 3…9. The possibilities for a are 1, 2, 3…14.

List out the possibilities for 5a and 7b:
Image
Because the question asks for the largest possible value of k, start with the largest answer choice. Do any of these pairs add to 74? Something from the 7b column would need to be added to a multiple of 5 (that is, a number that ends in either 5 or 0). Check the units digits. One possibility is that 7b + something with a unit’s digit of 5 = something with a unit’s digit of 4, so 7b would need to have a unit’s digit of 9. For example, 49 + 25 = 74. Is (E) the answer?

Hang on. The question asks for the largest possible number for which exactly one pair of integers (a, b) will work. We’ve just found one pair, but is there another? Keep checking. No other values for 7b end in 9, but we could also have 7b + a unit’s digit of 0 = a unit’s digit of 4, in which case the 7b would have to have a unit’s digit of 4. Are there any values for 7b that end in 4? Yes: 14. 14 + 60 = 74. For 74, then, at least two pairs (a, b) exist. Answer (E) is not correct.

What about answer (D), 70? Here, if the 5a value ends in 5, then 7b would also have to end in 5. Are there any values of 7b that end in 5? Yes, one: 35. 35 + 35 = 70, so one possible (a, b) pair does exist. Is there another? No other values of 7b end in 5. We also have to check what would happen if 5a ends in 0, though—in that case, 7b would also have to end in 0. The only value for 7b that ends in 0 is 70, but that would leave 5a = 0, and that’s not permitted (the problem says that a is a positive integer).

The only possible (a, b) pair, then, that makes k = 70 is (7, 5).

The correct answer is (D).

It is also possible to solve the problem with theory, but the solution is pretty tricky.

Note that the least common multiple of 5 and 7 is 5 x 7 = 35. Therefore, if a solution may be found where a > 7, then there will definitely be at least two solutions to the equation, since it will be possible to “trade” seven 5’s for five 7’s. For instance, if a = 8, then 5(8) + 7b = k, meaning that k would be the sum of eight 5’s and some number of 7’s. In that case, we could trade seven of the eight 5’s for five 7’s, so that k can also be written as 5(1) + 7(b + 5).

For the same reason, if b > 5, there will also be at least two solutions to the equation.

The maximum possible values for a and b (when told that there can’t be more than one solution pair for a and b) are thus 7 and 5, respectively. Can any other pairs of values for a and b also produce k = 70? Check as we did above; the answer is no. The only pair is a = 7 and b = 5, so k = 70 is the answer.

The correct answer is (D).

[Reveal] Spoiler:
Attachment:
chart.png
chart.png [ 2.88 KiB | Viewed 2489 times ]

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132696 [0], given: 12335

Director
Director
avatar
G
Joined: 07 Dec 2014
Posts: 836

Kudos [?]: 265 [0], given: 15

If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 08 Sep 2017, 18:20
Bunuel wrote:
If 5a + 7b = k, where a and b are positive integers, what is the largest possible value of k for which exactly one pair of integers (a, b) makes the equation true?

A. 35
B. 48
C. 69
D. 70
E. 74

Kudos for a correct solution.


5a+7b=k➡5a/7=k/7-b
if 5a/7 is an integer<70, then 5a must equal 35
a=7
b=5
5*7+7*5=70
D

Kudos [?]: 265 [0], given: 15

Expert Post
Target Test Prep Representative
User avatar
S
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 1806

Kudos [?]: 922 [0], given: 3

Location: United States (CA)
Re: If 5a + 7b = k, where a and b are positive integers, what is the large [#permalink]

Show Tags

New post 11 Sep 2017, 15:54
Bunuel wrote:
If 5a + 7b = k, where a and b are positive integers, what is the largest possible value of k for which exactly one pair of integers (a, b) makes the equation true?

A. 35
B. 48
C. 69
D. 70
E. 74


We can go through the given answer choices and check the given values from largest to smallest until we’ve found our answer.

E. 74

If k = 74, a could be 5 and b could be 7 since 5(5) + 7(7) = 25 + 49 = 74. However, we also can reduce b by 5 and increase a by 7 to obtain a sum of 74. That is, a could be 12 and b could be 2, and we also have 5(12) + 7(2) = 60 + 14 = 74. Thus, we have two different pairs of integers that make the equation true andE is not the answer.

D. 70

If k = 70, a could be 7 and b could be 5 since 5(7) + 7(5) = 35 + 35 = 70. Like in choice E, we also can reduce b by 5 and increase a by 7 to obtain a sum of 70. That is, a could be 14 and b could be 0, and we also have 5(14) + 7(0) = 70 + 0 = 70. However, we are told that a and b are positive integers. So a and b can’t be 14 and 0, respectively. There are no other ways to make a sum of 70 if both a and b are positive integers. Thus, we have exactly one pair of integers (7,5) that satisfies the equation and D is the correct answer.

Answer: D
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 922 [0], given: 3

Re: If 5a + 7b = k, where a and b are positive integers, what is the large   [#permalink] 11 Sep 2017, 15:54
Display posts from previous: Sort by

If 5a + 7b = k, where a and b are positive integers, what is the large

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.