GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 24 Sep 2018, 08:31

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If a and b are positive odd integers less

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

e-GMAT Representative
User avatar
P
Joined: 04 Jan 2015
Posts: 2014
If a and b are positive odd integers less  [#permalink]

Show Tags

New post Updated on: 13 Aug 2018, 02:48
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

41% (02:01) correct 59% (02:21) wrong based on 143 sessions

HideShow timer Statistics

e-GMAT Question:



If \(a\) and \(b\) are positive integers less than \(30\) and \(Q=7^a+ 5* 3^b\), is the units digit of \(Q\) equal to \(6\)?

1. \(a\) is the square of an odd prime number.
2. \(a-b=2\)

A) Statement (1) ALONE is sufficient, but statement (2) ALONE is not sufficient.
B) Statement (2) ALONE is sufficient, but statement (1) ALONE is not sufficient.
C) Both statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D) EACH statement ALONE is sufficient.
E) Statement (1) and (2) TOGETHER are NOT sufficient.

This is

Question 5 of The e-GMAT Number Properties Marathon




Go to

Question 6 of the Marathon


_________________








Register for free sessions
Number Properties | Algebra |Quant Workshop

Success Stories
Guillermo's Success Story | Carrie's Success Story

Ace GMAT quant
Articles and Question to reach Q51 | Question of the week

Must Read Articles
Number Properties – Even Odd | LCM GCD | Statistics-1 | Statistics-2
Word Problems – Percentage 1 | Percentage 2 | Time and Work 1 | Time and Work 2 | Time, Speed and Distance 1 | Time, Speed and Distance 2
Advanced Topics- Permutation and Combination 1 | Permutation and Combination 2 | Permutation and Combination 3 | Probability
Geometry- Triangles 1 | Triangles 2 | Triangles 3 | Common Mistakes in Geometry
Algebra- Wavy line | Inequalities

Practice Questions
Number Properties 1 | Number Properties 2 | Algebra 1 | Geometry | Prime Numbers | Absolute value equations | Sets



| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com


Originally posted by EgmatQuantExpert on 28 Feb 2018, 02:50.
Last edited by EgmatQuantExpert on 13 Aug 2018, 02:48, edited 5 times in total.
BSchool Forum Moderator
User avatar
G
Joined: 07 Jan 2016
Posts: 750
Location: India
GMAT 1: 710 Q49 V36
Reviews Badge
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 28 Feb 2018, 02:57
EgmatQuantExpert wrote:

Question:



If \(a\) and \(b\) are positive odd integers less than \(30\) and \(Q=7^a+ 5* 3^b\), is the units digit of \(Q\) equal to \(6\)?
1. \(a\) is the square of a prime number.
2. \(a-b=2\)

A) Statement (1) ALONE is sufficient, but statement (2) ALONE is not sufficient.
B) Statement (2) ALONE is sufficient, but statement (1) ALONE is not sufficient.
C) Both statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D) EACH statement ALONE is sufficient.
E) Statement (1) and (2) TOGETHER are NOT sufficient.



Now we know 5xeven ends in 0 i.e 5 x0 , 5x2 , 5x4 all end in unit digit 0
5xodd ends in 5 i,e 5x1, 5x3, 5x5 all end in unit digit 5

now 7^k (k = 1 to infinity) has a cycle of 4 for its unit digit i.e 7,49,343,2401 etc

thus for \(Q=7^a+ 5* 3^b\) all we need to find if a is 4/multiple of 4 because for a unit digit of 6 ~ 1+5 is needed according to the given Q value as 5x3^b ~ 5xodd always ends in 5

now we need to know if 7^a ends in 1 / a is a multiple of 4


1) a is the square of prime

a can't be 4 as a is odd positive

sufficient

2) a -b = 2

a and b both are odd
a can't be 4/multiple of 4

thus

sufficient

(D) imo
PS Forum Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1217
Location: India
GPA: 3.82
GMAT ToolKit User Premium Member Reviews Badge
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 28 Feb 2018, 03:09
EgmatQuantExpert wrote:

Question:



If \(a\) and \(b\) are positive odd integers less than \(30\) and \(Q=7^a+ 5* 3^b\), is the units digit of \(Q\) equal to \(6\)?
1. \(a\) is the square of a prime number.
2. \(a-b=2\)

A) Statement (1) ALONE is sufficient, but statement (2) ALONE is not sufficient.
B) Statement (2) ALONE is sufficient, but statement (1) ALONE is not sufficient.
C) Both statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D) EACH statement ALONE is sufficient.
E) Statement (1) and (2) TOGETHER are NOT sufficient.


hi EgmatQuantExpert

\(Q=7^a+ 5* 3^b\), now \(5*3^b\) will have unit's digit of 5 irrespective of value of \(b\) because \(b\) is an odd integer, so if \(a=4k\), then \(7^a\) will have unit's digit of 1 and hence the expression will have a unit's digit of \(1+5=6\).

now it is given that \(a\) is odd integer, so \(a\) will never be of the form 4k. hence the expression will not have a unit's digit of 6.

So we don't need the statements actually.

What am I missing here?
BSchool Forum Moderator
User avatar
G
Joined: 07 Jan 2016
Posts: 750
Location: India
GMAT 1: 710 Q49 V36
Reviews Badge
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 28 Feb 2018, 03:30
niks18 wrote:
So we don't need the statements actually.

What am I missing here?


Yes we don't need the statements to find out the values and since each statement gives us a unique value of the unit digit not being 6

(D) will be the answer
BSchool Forum Moderator
User avatar
G
Joined: 07 Jan 2016
Posts: 750
Location: India
GMAT 1: 710 Q49 V36
Reviews Badge
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 28 Feb 2018, 03:31
niks18 wrote:

So we don't need the statements actually.

What am I missing here?


I agree with you, the question should have been worded differently imo

knowing a is odd we don't actually need them but we need to go with D i guess what do you think?
PS Forum Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1217
Location: India
GPA: 3.82
GMAT ToolKit User Premium Member Reviews Badge
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 28 Feb 2018, 03:38
Hatakekakashi wrote:
niks18 wrote:

So we don't need the statements actually.

What am I missing here?


I agree with you, the question should have been worded differently imo

knowing a is odd we don't actually need them but we need to go with D i guess what do you think?


Hi Hatakekakashi

I think the question is flawed.

Hi Bunuel,

can you provide some clarity.
BSchool Forum Moderator
User avatar
G
Joined: 07 Jan 2016
Posts: 750
Location: India
GMAT 1: 710 Q49 V36
Reviews Badge
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 28 Feb 2018, 03:47
niks18 wrote:

Hi Hatakekakashi

I think the question is flawed.

Hi Bunuel,

can you provide some clarity.


Hi,
yeah Q is flawed


Regards,
HK
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 6807
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 28 Feb 2018, 07:11
EgmatQuantExpert wrote:

Question:



If \(a\) and \(b\) are positive odd integers less than \(30\) and \(Q=7^a+ 5* 3^b\), is the units digit of \(Q\) equal to \(6\)?

1. \(a\) is the square of a prime number.
2. \(a-b=2\)

A) Statement (1) ALONE is sufficient, but statement (2) ALONE is not sufficient.
B) Statement (2) ALONE is sufficient, but statement (1) ALONE is not sufficient.
C) Both statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D) EACH statement ALONE is sufficient.
E) Statement (1) and (2) TOGETHER are NOT sufficient.



Hi..

if positive odd integers is changed to positive even integers, it will be a properly worded question. In present way it is flawed as you don't require any statements..
If it is even, then ans is A
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

e-GMAT Representative
User avatar
P
Joined: 04 Jan 2015
Posts: 2014
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post Updated on: 22 Mar 2018, 11:41

Solution:



We are given:
    \(a\) and \(b\) are positive integers and,
We need to find:
    Units digit of \(7^a+ 5× 3^b\).
Per our conceptual understanding, we know.
when \(5\) is multiplied by an odd number, the units-digit of resultant number becomes \(5\).
Therefore,
    Units digit of \(5× 3^b\) is always equal to \(5\), regardless of the value of \(b\).
Hence, we only need to find the value of \(a\).
Now, for \(7^a+ 5× 3^b\) to end in \(6\), \(7^a\) must end in \(1\) OR a must be of the form \(4k\) for \(7^a\) to give units digit as \(1\).
Let’s now analyse the statements one by one.
Statement 1:
“a is the square of an odd prime number”

The possible values of a less than \(30\) are \(9\) and \(25\).
    \(9= 4*2+1\) \((k=2)\)
    \(25= 4*6+1\) \((k=6)\)

Hence, \(a\) is not of the form \(4k\). Therefore, units digit of \(7^a+ 5× 3^b\) is not \(6\).
Therefore, Statement 1 alone is sufficient to answer the question.
Statement 2:
“a-b=2”
We are given, \(a\) is less than \(30\). Till \(30,\) there are many possible values of \(a\) and \(b\) such that the difference between \(a\) and \(b\) is \(2\).

Thus, from this statement, we cannot be certain that the units digits of \(7^a+ 5× 3^b\) is \(6\) or not.

Therefore, we are getting answer by statement 1 ALONE only but not by statement 2.
Answer: Option A
_________________








Register for free sessions
Number Properties | Algebra |Quant Workshop

Success Stories
Guillermo's Success Story | Carrie's Success Story

Ace GMAT quant
Articles and Question to reach Q51 | Question of the week

Must Read Articles
Number Properties – Even Odd | LCM GCD | Statistics-1 | Statistics-2
Word Problems – Percentage 1 | Percentage 2 | Time and Work 1 | Time and Work 2 | Time, Speed and Distance 1 | Time, Speed and Distance 2
Advanced Topics- Permutation and Combination 1 | Permutation and Combination 2 | Permutation and Combination 3 | Probability
Geometry- Triangles 1 | Triangles 2 | Triangles 3 | Common Mistakes in Geometry
Algebra- Wavy line | Inequalities

Practice Questions
Number Properties 1 | Number Properties 2 | Algebra 1 | Geometry | Prime Numbers | Absolute value equations | Sets



| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com


Originally posted by EgmatQuantExpert on 28 Feb 2018, 12:29.
Last edited by EgmatQuantExpert on 22 Mar 2018, 11:41, edited 1 time in total.
PS Forum Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1217
Location: India
GPA: 3.82
GMAT ToolKit User Premium Member Reviews Badge
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 01 Mar 2018, 09:17
EgmatQuantExpert wrote:

Solution:



We are given:
    \(a\) and \(b\) are positive integers and,
We need to find:
    Units digit of \(7^a+ 5× 3^b\).
Per our conceptual understanding, we know.
when \(5\) is multiplied by an odd number, the units-digit of resultant number becomes \(5\).
Therefore,
    Units digit of \(5× 3^b\) is always equal to \(5\), regardless of the value of \(b\).
Hence, we only need to find the value of \(a\).
Now, for \(7^a+ 5× 3^b\) to end in \(6\), \(7^a\) must end in \(1\) OR a must be of the form \(4k\) for \(7^a\) to give units digit as \(1\).
Let’s now analyse the statements one by one.
Statement 1:
“a is the square of a prime number”

The possible values of a less than \(30\) are \(4,9\) and \(25\). However, \(a\) is an odd integer. Thus, the possible values of \(a\) are \(9\) and \(25\).
    \(9= 4*2+1\) \((K=2)\)
    \(25= 4*6+1\) \((k=6)\)

Hence, \(a\) is not of the form \(4k\). Therefore, units digit of \(7^a+ 5× 3^b\) is not \(6\).
Therefore, Statement 1 alone is sufficient to answer the question.
Statement 2:
“a-b=2”
We are given, \(a\) is less than \(30\). Till \(30,\) there are many possible values of \(a\) and \(b\) such that the difference between \(a\) and \(b\) is \(2\).

Thus, from this statement, we cannot be certain that the units digits of \(7^a+ 5× 3^b\) is \(6\) or not.

Therefore, we are getting answer by statement 1 ALONE only but not by statement 2.
Answer: Option A


Hi EgmatQuantExpert

based on your solution, the question needs to be corrected. So instead of a & b being positive odd integers, question should mention a & b as positive integers only.
Intern
Intern
avatar
B
Joined: 19 Sep 2011
Posts: 30
GMAT ToolKit User Premium Member
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 11 Mar 2018, 16:21
Imo it is D.
In statement 2 For a-b = 2, a>b and they will always be consecutive multiple.
7^27 + 5^25 gives Unit digit as 2 always . Therefore using statement 2 we can sufficiently say the answer is NO .
Statement A as well results in an Absolute No.
DS Forum Moderator
avatar
P
Joined: 22 Aug 2013
Posts: 1343
Location: India
Premium Member
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 11 Mar 2018, 22:15
Jerry1982 wrote:
Imo it is D.
In statement 2 For a-b = 2, a>b and they will always be consecutive multiple.
7^27 + 5^25 gives Unit digit as 2 always . Therefore using statement 2 we can sufficiently say the answer is NO .
Statement A as well results in an Absolute No.


Hello

In the present form of question the statements are actually not needed as Niks has explained in his post here:
https://gmatclub.com/forum/if-a-and-b-a ... l#p2022738

So you are correct that as per second statement also the unit's digit will never be 6. But one thing I would like to add is that as per second statement, the unit's digit will NOT always be '2'. It can be '8' also.
Eg., if we take a=3 and b=1, then 7^3 + 5*3^1, will give a unit's digit of '8'. So the unit's digit can be either 2 or 8 but never 6.
Manager
Manager
avatar
G
Joined: 04 Apr 2015
Posts: 109
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 12 Mar 2018, 00:05
EgmatQuantExpert wrote:

Solution:



We are given:
    \(a\) and \(b\) are positive integers and,
We need to find:
    Units digit of \(7^a+ 5× 3^b\).
Per our conceptual understanding, we know.
when \(5\) is multiplied by an odd number, the units-digit of resultant number becomes \(5\).
Therefore,
    Units digit of \(5× 3^b\) is always equal to \(5\), regardless of the value of \(b\).
Hence, we only need to find the value of \(a\).
Now, for \(7^a+ 5× 3^b\) to end in \(6\), \(7^a\) must end in \(1\) OR a must be of the form \(4k\) for \(7^a\) to give units digit as \(1\).
Let’s now analyse the statements one by one.
Statement 1:
“a is the square of a prime number”

The possible values of a less than \(30\) are \(4,9\) and \(25\). However, \(a\) is an odd integer. Thus, the possible values of \(a\) are \(9\) and \(25\).
    \(9= 4*2+1\) \((K=2)\)
    \(25= 4*6+1\) \((k=6)\)

Hence, \(a\) is not of the form \(4k\). Therefore, units digit of \(7^a+ 5× 3^b\) is not \(6\).
Therefore, Statement 1 alone is sufficient to answer the question.
Statement 2:
“a-b=2”
We are given, \(a\) is less than \(30\). Till \(30,\) there are many possible values of \(a\) and \(b\) such that the difference between \(a\) and \(b\) is \(2\).

Thus, from this statement, we cannot be certain that the units digits of \(7^a+ 5× 3^b\) is \(6\) or not.

Therefore, we are getting answer by statement 1 ALONE only but not by statement 2.
Answer: Option A





a and b are both "odd positive integers <30"

so if you put b=1, a will be 3. If a will be 3, 7^a will have unit have unit 3.
If you put any value of b( odd value<30), the unit digit value of 7^a will be either 7 or 3.
Also 3^b will always yield an odd value and that odd value when multiplied by 5 will give result in a number of unit digit 5.
so Q can never have an unit digit 6.

IMO answer D
Bunuel plz comment
e-GMAT Representative
User avatar
P
Joined: 04 Jan 2015
Posts: 2014
Re: If a and b are positive odd integers less  [#permalink]

Show Tags

New post 22 Mar 2018, 11:44
niks18 wrote:
EgmatQuantExpert wrote:

Question:



If \(a\) and \(b\) are positive odd integers less than \(30\) and \(Q=7^a+ 5* 3^b\), is the units digit of \(Q\) equal to \(6\)?
1. \(a\) is the square of a prime number.
2. \(a-b=2\)

A) Statement (1) ALONE is sufficient, but statement (2) ALONE is not sufficient.
B) Statement (2) ALONE is sufficient, but statement (1) ALONE is not sufficient.
C) Both statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D) EACH statement ALONE is sufficient.
E) Statement (1) and (2) TOGETHER are NOT sufficient.


hi EgmatQuantExpert

\(Q=7^a+ 5* 3^b\), now \(5*3^b\) will have unit's digit of 5 irrespective of value of \(b\) because \(b\) is an odd integer, so if \(a=4k\), then \(7^a\) will have unit's digit of 1 and hence the expression will have a unit's digit of \(1+5=6\).

now it is given that \(a\) is odd integer, so \(a\) will never be of the form 4k. hence the expression will not have a unit's digit of 6.

So we don't need the statements actually.

What am I missing here?


Hey Everyone,

Niks is right, there was a typo in the question because of which none of the statements were required.

We have edited the question.

Apologies for the inconvenience

Thanks,

E-gmat
_________________








Register for free sessions
Number Properties | Algebra |Quant Workshop

Success Stories
Guillermo's Success Story | Carrie's Success Story

Ace GMAT quant
Articles and Question to reach Q51 | Question of the week

Must Read Articles
Number Properties – Even Odd | LCM GCD | Statistics-1 | Statistics-2
Word Problems – Percentage 1 | Percentage 2 | Time and Work 1 | Time and Work 2 | Time, Speed and Distance 1 | Time, Speed and Distance 2
Advanced Topics- Permutation and Combination 1 | Permutation and Combination 2 | Permutation and Combination 3 | Probability
Geometry- Triangles 1 | Triangles 2 | Triangles 3 | Common Mistakes in Geometry
Algebra- Wavy line | Inequalities

Practice Questions
Number Properties 1 | Number Properties 2 | Algebra 1 | Geometry | Prime Numbers | Absolute value equations | Sets



| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com

GMAT Club Bot
Re: If a and b are positive odd integers less &nbs [#permalink] 22 Mar 2018, 11:44
Display posts from previous: Sort by

If a and b are positive odd integers less

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.