Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

 It is currently 21 Jul 2019, 06:11 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # If a b and |a-b| = b-a, which of the following statements

Author Message
TAGS:

### Hide Tags

Intern  Joined: 25 Mar 2013
Posts: 3
Location: Italy
WE: General Management (Other)
If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

2
36 00:00

Difficulty:   35% (medium)

Question Stats: 67% (01:30) correct 33% (01:48) wrong based on 901 sessions

### HideShow timer Statistics If a ≠ b and |a-b| = b-a, which of the following statements must be true ?

I. a < 0
II. a + b < 0
III. a < b

(A) None
(B) I only
(C) III only
(D) I and II
(E) II and III

Thank's in advance for helping to solve the problem, the OA should be ( C ) , but I'm not sure 100% about it; a friend gave to me several GMAT exercises for training.

_________________
Labor omnia vincit
Math Expert V
Joined: 02 Sep 2009
Posts: 56307
Re: If a ≠ b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

7
15
If a ≠ b and |a-b| = b-a, which of the following statements must be true ?

I. a < 0
II. a + b < 0
III. a < b

(A) None
(B) I only
(C) III only
(D) I and II
(E) II and III

Absolute value properties:

When $$x\leq{0}$$ then $$|x|=-x$$, or more generally when $$some \ expression\leq{0}$$ then $$|some \ expression|={-(some \ expression)}$$. For example: $$|-5|=5=-(-5)$$;

When $$x\geq{0}$$ then $$|x|=x$$, or more generally when $$some \ expression\geq{0}$$ then $$|some \ expression|={some \ expression}$$. For example: $$|5|=5$$;

Thus, according to the above, since $$|a-b| = b-a=-(a-b)$$, then $$a-b\leq{0}$$ --> $$a\leq{b}$$. Since we also know that $$a\neq{b}$$, then we have that $$a<b$$. So, III is always true.

As for the other options:
I. a < 0 --> not necessarily true, consider a=1 and b=2.
II. a + b < 0 --> not necessarily true, consider a=-2 and b=-1.

For more check here: math-absolute-value-modulus-86462.html
_________________
VP  Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1044
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Re: If a ≠ b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

5
1
I think the best way here is using real numbers

I) a < 0
a=1, b=5
|1-5|=5-1
4=4, so I is not always true

II) a + b < 0
a=3,b=4
|3-4|=4-3
1=1, so II is not always true

III) a < b
|a-b| = b-a
if $$a>b$$ then $$|a-b| = a-b$$ and doesn't equal b-a
if $$b>a$$ then $$|a-b| = -(a-b) = -a+b = b-a$$ so III is true
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]
##### General Discussion
Intern  Joined: 22 Jan 2010
Posts: 24
Location: India
Concentration: Finance, Technology
GPA: 3.5
WE: Programming (Telecommunications)
Re: If a ≠ b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

1
The given conditions are :
i) a is not equal to b ,i,e a-b is non zero.
ii) |a -b | = b-a ,i,e -(a-b).
So ,considering the above conditions,
a - b < 0 => a < b.
_________________
Please press +1 KUDOS if you like my post.
Senior Manager  Joined: 13 May 2013
Posts: 414
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

Because |a-b| = b-a, could we say that b-a is positive (because it is equal to an abs. val.) and therefore, b must be greater than a?

Also, I first tired to solve this problems by:

|a-b| = b-a so:

a-b = b-a
2a = 2b
a=b
(which isn't true as the stem tells us it isn't)

OR

-a+b=b-a
0=0

But I'm not sure how to interpret that result. Is that a valid way to solve the problem?
VP  Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1044
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

1
WholeLottaLove wrote:
Because |a-b| = b-a, could we say that b-a is positive (because it is equal to an abs. val.) and therefore, b must be greater than a?

Also, I first tired to solve this problems by:

|a-b| = b-a so:

a-b = b-a
2a = 2b
a=b
(which isn't true as the stem tells us it isn't)

OR

-a+b=b-a
0=0

But I'm not sure how to interpret that result. Is that a valid way to solve the problem?

The second result tells you that whatever value $$a$$ and $$b$$ have, that equation will always be true: $$0=0$$ always.

0=0 means that that case will always hold, hence that case (b>a) will always be "true"
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]
Senior Manager  Joined: 13 May 2013
Posts: 414
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

So, in other words,

I.) |a-b| = b-a
II.) b-a is positive because it is equal to an absolute value
III.) b must be greater than a because b-a is positive
IV.) a-b must be negative
V.) |a-b| = -(a-b)
VI.) a-b ≤ 0
VII.) a ≤ b

Zarrolou wrote:
WholeLottaLove wrote:
Because |a-b| = b-a, could we say that b-a is positive (because it is equal to an abs. val.) and therefore, b must be greater than a?

Also, I first tired to solve this problems by:

|a-b| = b-a so:

a-b = b-a
2a = 2b
a=b
(which isn't true as the stem tells us it isn't)

OR

-a+b=b-a
0=0

But I'm not sure how to interpret that result. Is that a valid way to solve the problem?

The second result tells you that whatever value $$a$$ and $$b$$ have, that equation will always be true: $$0=0$$ always.

0=0 means that that case will always hold, hence that case (b>a) will always be "true"
VP  Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1044
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

1
1
WholeLottaLove wrote:
So, in other words,

I.) |a-b| = b-a
II.) b-a is positive because it is equal to an absolute value
III.) b must be greater than a because b-a is positive
IV.) a-b must be negative
V.) |a-b| = -(a-b)
VI.) a-b ≤ 0
VII.) a ≤ b

Yes, perfect. Just remember that we are told that $$a\neq{b}$$ so

VII)$$a<b$$
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]
Senior Manager  Joined: 13 May 2013
Posts: 414
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

Ahh - I forgot about that. Thanks!

Zarrolou wrote:
WholeLottaLove wrote:
So, in other words,

I.) |a-b| = b-a
II.) b-a is positive because it is equal to an absolute value
III.) b must be greater than a because b-a is positive
IV.) a-b must be negative
V.) |a-b| = -(a-b)
VI.) a-b ≤ 0
VII.) a ≤ b

Yes, perfect. Just remember that we are told that $$a\neq{b}$$ so

VII)$$a<b$$
Intern  Joined: 09 Apr 2013
Posts: 2
GPA: 3.5
WE: Accounting (Accounting)
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

Another thing to remember is that, because of the absolute value

|a-b| ≤ b-a

because the absolute value either turns a negative positive or leaves a positive the same..
Director  B
Joined: 04 Jun 2016
Posts: 562
GMAT 1: 750 Q49 V43 If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

1
matspring wrote:
If a ≠ b and |a-b| = b-a, which of the following statements must be true ?

I. a < 0
II. a + b < 0
III. a < b

(A) None
(B) I only
(C) III only
(D) I and II
(E) II and III

Thank's in advance for helping to solve the problem, the OA should be ( C ) , but I'm not sure 100% about it; a friend gave to me several GMAT exercises for training.

Lets interpret the LHS first :----> |a-b|
anything that comes out of a mod is positive ; therefore |a-b|=postive ..........equation 1
Now lets check the RHS -------> b-a
The question stem tells us that |a-b|=b-a .............equation 2
Rearranging equation 2 gives us b-a =|a-b| .............. equation 3

Equation 1 tells that |a-b| is positive
Put value of |a-b| from equation 1 into equation 3
b-a = |a-b|=positive
b-a =positive

This is only possible when b > a
we cannot say anything with mathematical surety except that b>a

Hence the answer is C (III only)
_________________
Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly.
FINAL GOODBYE :- 17th SEPTEMBER 2016. .. 16 March 2017 - I am back but for all purposes please consider me semi-retired.
Intern  Joined: 25 Jul 2017
Posts: 7
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

Since, it is given that
|a-b| = b-a, we can infer following from Absolute Value -
|a-b| = -(a-b) = b-a => a-b must be negative or 0
i.e. a-b < 0 (a=B, so a-b cannot be 0)
=> a<b Hence, only option III satisfies.
Now, let us see other options -

I. a < 0 even without plugging numbers, we can see this cannot be true always. No info ob B, and depending upon b the equation may vary.
II. a + b < 0 B=Not neccessarily tru, since we already know that only a<b is sufficient. It foes not matter whether a is +ve or _ve as long as it is less than b.
III. a < b

Hence, C only option III works.
Tip: Sometimes, I do not tend to plug numbers because they eat away time, and questions like (oops such as ) these can be solve without this strategy.
Intern  B
Joined: 14 Jun 2017
Posts: 19
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

Bunuel wrote:
If a ≠ b and |a-b| = b-a, which of the following statements must be true ?

I. a < 0
II. a + b < 0
III. a < b

(A) None
(B) I only
(C) III only
(D) I and II
(E) II and III

Absolute value properties:

When $$x\leq{0}$$ then $$|x|=-x$$, or more generally when $$some \ expression\leq{0}$$ then $$|some \ expression|={-(some \ expression)}$$. For example: $$|-5|=5=-(-5)$$;

When $$x\geq{0}$$ then $$|x|=x$$, or more generally when $$some \ expression\geq{0}$$ then $$|some \ expression|={some \ expression}$$. For example: $$|5|=5$$;

Thus, according to the above, since $$|a-b| = b-a=-(a-b)$$, then $$a-b\leq{0}$$ --> $$a\leq{b}$$. Since we also know that $$a\neq{b}$$, then we have that $$a<b$$. So, III is always true.

As for the other options:
I. a < 0 --> not necessarily true, consider a=1 and b=2.
II. a + b < 0 --> not necessarily true, consider a=-2 and b=-1.

For more check here: http://gmatclub.com/forum/math-absolute ... 86462.html

I am really struggling with the below line

Thus, according to the above, since $$|a-b| = b-a=-(a-b)$$, then $$a-b\leq{0}$$ --> $$a\leq{b}$$. Since we also know that $$a\neq{b}$$, then we have that $$a<b$$

Why does $$|a-b| = b-a=-(a-b)$$?

I thought you have to check if | a-b| > 0 and < 0?
Intern  B
Joined: 12 Feb 2018
Posts: 13
Re: If a b and |a-b| = b-a, which of the following statements  [#permalink]

### Show Tags

|a-b| = -(a-b) <---- given

Also, we know that if |x| = -x then x<0 therefore, (a-b) < 0 -----> a<b Re: If a b and |a-b| = b-a, which of the following statements   [#permalink] 25 Mar 2019, 20:21
Display posts from previous: Sort by

# If a b and |a-b| = b-a, which of the following statements  