GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 16 Oct 2019, 18:26

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 58381
If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =  [#permalink]

### Show Tags

01 Apr 2015, 04:09
00:00

Difficulty:

5% (low)

Question Stats:

86% (01:18) correct 14% (01:45) wrong based on 131 sessions

### HideShow timer Statistics

If k ≠ 0, k ≠ ±1, and $$\frac{(k^3*k*k^4)^2}{k^n*k}=k^{14}$$ , then n =

A. -1
B. 1
C. 3
D. 49
E. 129

Kudos for a correct solution.

_________________
Director
Joined: 07 Aug 2011
Posts: 502
Concentration: International Business, Technology
GMAT 1: 630 Q49 V27
If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =  [#permalink]

### Show Tags

01 Apr 2015, 04:16
Bunuel wrote:
If k ≠ 0, k ≠ ±1, and $$\frac{(k^3*k*k^4)^2}{k^n*k}=k^{14}$$ , then n =

A. -1
B. 1
C. 3
D. 49
E. 129

Kudos for a correct solution.

Answer B.
$$K^{16-n-1} = K^{14}$$

n=1
Retired Moderator
Status: On a mountain of skulls, in the castle of pain, I sit on a throne of blood.
Joined: 30 Jul 2013
Posts: 300
Re: If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =  [#permalink]

### Show Tags

01 Apr 2015, 04:18
Bunuel wrote:
If k ≠ 0, k ≠ ±1, and $$\frac{(k^3*k*k^4)^2}{k^n*k}=k^{14}$$ , then n =

A. -1
B. 1
C. 3
D. 49
E. 129

Kudos for a correct solution.

The powers will be (3+1+4)2-n-1=14
15-n=14
n=1

Answer: B
Intern
Joined: 22 Aug 2014
Posts: 40
Re: If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =  [#permalink]

### Show Tags

01 Apr 2015, 04:39
1
Bunuel wrote:
If k ≠ 0, k ≠ ±1, and $$\frac{(k^3*k*k^4)^2}{k^n*k}=k^{14}$$ , then n =

A. -1
B. 1
C. 3
D. 49
E. 129

Kudos for a correct solution.

Deducing the eqn, we get:

(K^8)^2/K^(n+1) = K*14

16 - (n + 1) = 14
n = 1

Option B
SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1749
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =  [#permalink]

### Show Tags

01 Apr 2015, 21:05
Answer = B = 1

$$\frac{(k^3*k*k^4)^2}{k^n*k}=k^{14}$$

$$\frac{(k^8)^2}{k^n * k^1}=k^{14}$$

$$\frac{k^{16}}{k^n * k^1}=k^{14}$$

$$\frac{k^{15}}{k^n}=k^{14}$$

$$k^n = k^{1}$$

n = 1
_________________
Kindly press "+1 Kudos" to appreciate
Math Expert
Joined: 02 Sep 2009
Posts: 58381
Re: If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =  [#permalink]

### Show Tags

06 Apr 2015, 05:59
Bunuel wrote:
If k ≠ 0, k ≠ ±1, and $$\frac{(k^3*k*k^4)^2}{k^n*k}=k^{14}$$ , then n =

A. -1
B. 1
C. 3
D. 49
E. 129

Kudos for a correct solution.

MAGOOSH OFFICIAL SOLUTION:
Attachment:

determinetheexponentII_text.PNG [ 14.37 KiB | Viewed 2288 times ]

_________________
Non-Human User
Joined: 09 Sep 2013
Posts: 13210
Re: If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =  [#permalink]

### Show Tags

03 Nov 2018, 02:03
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =   [#permalink] 03 Nov 2018, 02:03
Display posts from previous: Sort by

# If k ≠ 0, k ≠ ±1, and (k^3*k*k^4)^2/k^n*k=k^14 , then n =

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne