ahatoval
Hey guys,
Can anybody explain me why the following is B?
If m is an integer, is m odd?
(1) m/2 is NOT an even integer
(2) m - 3 is an even integer.
My thought process was:
(1) Since m/2 is NOT an even integer, then => it IS an odd integer. subsequently ODD * 2 = EVEN. Sufficient
Many thanks,
Hi ahatoval, this is a common mistake the GMAT likes to exploit, so it's good to have a complete understanding of it. The key is keeping track of what must be an integer, and what doesn't have to be.
Statement 2 is correct because m has to be an integer, so any odd integer -3 (or -5 or -7) would be even. Sufficient.
You seem to be more concerned with statement 1. This statement tells us that m is an integer, but that m/2 is not an even integer. This is not the same thing as being an odd integer. Let's look at values of m/2 for different m's
m=1 --) m/2 = 0.5
m=2 --) m/2 = 1
m=3 --) m/2 = 1.5
m=4 --) m/2 = 2
...
pattern repeats
Therefore, if m/2 is not an even integer, then m=4 is excluded from the list of possibilities. This leaves m=1, m=2 and m=3. M/2 can therefore be an odd integer or a non-integer. Since we have examples of both, we cannot conclude with certainty whether m is an odd integer, it can be either 1 or 2 or 3 (or 5 or 6 or 7...)
The assumption you make that leads you down the rabbit hole on this question is that m/2 must be an integer. This is not stated in the question and easily demonstrated to be false with a few small examples. On Data Sufficiency, it's often a good idea to try a few numbers and see if you can discern a pattern.
Hope this helps!
-Ron