Last visit was: 12 Sep 2024, 01:34 It is currently 12 Sep 2024, 01:34
Toolkit
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

# If N is a positive odd integer, is N prime?

SORT BY:
Tags:
Show Tags
Hide Tags
Board of Directors
Joined: 01 Sep 2010
Posts: 4562
Own Kudos [?]: 34038 [159]
Given Kudos: 4625
RC & DI Moderator
Joined: 02 Aug 2009
Status:Math and DI Expert
Posts: 11510
Own Kudos [?]: 35949 [17]
Given Kudos: 333
Intern
Joined: 22 Mar 2017
Posts: 24
Own Kudos [?]: 44 [15]
Given Kudos: 143
GMAT 1: 680 Q48 V35
General Discussion
RC & DI Moderator
Joined: 02 Aug 2009
Status:Math and DI Expert
Posts: 11510
Own Kudos [?]: 35949 [4]
Given Kudos: 333
Re: If N is a positive odd integer, is N prime? [#permalink]
3
Bookmarks
chetan2u
carcass
If N is a positive odd integer, is N prime?

(1) $$N = 2^k+ 1$$ for some positive integer k.

(2) N + 2 and N + 4 are both prime.

hi...

lets see the statements..

(1) $$N = 2^k+ 1$$ for some positive integer k.
if k = 2, N = $$2^2+1=5$$.. YES
if k= 3, N=$$2^3+1=9$$... No
Insuff

(2) N + 2 and N + 4 are both prime
if N+2 and N+4 are prime, ONE of N or N+2 or N+4 will surely be MULTIPLE of 3..
so N can be prime only when N=3, otherwise always NO
Insuff

combined
Nothing new

E

Responding to a PM ...
Why should one of n, n+2 or n+4 be a multiple of 3....
If n is odd, all three will be odd....
1,3,5 or 3,5,7.... In these 3 is multiple of 3
Next three are 5,7,9..., So here 3 has moved out of set but 9 has come in
Say n is even
2,4,6 or 4,6,8 or 6,8,10.... Here 6 is present
Next would be 8,10,12.... So 6 has moved out but 12 has come in...

The reason for this is the multiple of 3 comes after 3..
Similarly if you are looking for say n,n+2,.....n+12 these are 7 terms and any one of them would surely be multiple of all odd prime numbers till 7... 3,5,7
Manager
Joined: 10 Apr 2018
Posts: 183
Own Kudos [?]: 461 [12]
Given Kudos: 115
Location: United States (NC)
Re: If N is a positive odd integer, is N prime? [#permalink]
5
Kudos
7
Bookmarks
Hi,

First thankyou chetan2u, you have given a wonderful ready to use result that would be very useful for lot of questions especially on divisibility.

If i may take liberty to repost the result that you have shared, if I were to remember ( actuality no need to memories since is understood the reasoning behind it ) this result it would be as follows

If we have a consecutive series of "n" odd or "n"even numbers , then one of them will be will be definitely divisible by odd numbers <=n.

Lets take an series of 5 consecutive odd numbers, then as per this one of them will be definitely divisible by odd numbers <=5 ( that means the one of the numbers will be definitely divisible by (3, 5)

say the series is 5 consecutive odd numbers
101, 103,105, 107,109 So we have 105 is divisible by 5& 3 and 109 is divisible by 3.

Lets take another series of 5 consecutive even numbers, then as per this one of them will be definitely divisible by odd numbers <=5 ( that means the one of the numbers will be definitely divisible by (3, 5)

say we have 100,102,104,106,108, We do have 100 divisible by 5 and (102 & 108) divisible by 3

Now say we have series of 7 consecutive odd number then one of them will be definitely divisible by odd numbers <=7( that means the one of the numbers will be definitely divisible by (3, 5, 7)

say the series is
101, 103,105, 107,109 ,111, 113 So we have 105 is divisible by 7, 5& 3 and 109 is divisible by 3.

We can expand from this result and get many more results that we can use during exams.

Thanks to chetan2u
Manager
Joined: 23 Aug 2017
Posts: 93
Own Kudos [?]: 18 [0]
Given Kudos: 9
Schools: ISB '21 (A)
Re: If N is a positive odd integer, is N prime? [#permalink]
chetan2u
Can you please explain this statement that u made in the solution:-
if N+2 and N+4 are prime, ONE of N or N+2 or N+4 will surely be MULTIPLE of 3..
RC & DI Moderator
Joined: 02 Aug 2009
Status:Math and DI Expert
Posts: 11510
Own Kudos [?]: 35949 [0]
Given Kudos: 333
Re: If N is a positive odd integer, is N prime? [#permalink]
Debashis Roy
chetan2u
Can you please explain this statement that u made in the solution:-
if N+2 and N+4 are prime, ONE of N or N+2 or N+4 will surely be MULTIPLE of 3..

If you take three consecutive odd or consecutive even, one if then will surely be multiple of 3..
1) consecutive odd.. take 5, so 5,7,9...9 is multiple..; take N as 13, ..13,15,17..15 is multiple
2) Consecutive even...take 2..2,4,6...6 is multiple ..; take N as 22...22,24,26..24 is a multiple

So if you take any 6 consecutive number, it will contain one odd and one even multiple of 3..
Similarly, if you take 10 consecutive numbers, it will contain 1odd and 1 even multiple of 5
Intern
Joined: 14 Oct 2016
Posts: 31
Own Kudos [?]: 35 [0]
Given Kudos: 155
Location: India
WE:Sales (Energy and Utilities)
Re: If N is a positive odd integer, is N prime? [#permalink]
chetan2u
chetan2u
carcass
If N is a positive odd integer, is N prime?

(1) $$N = 2^k+ 1$$ for some positive integer k.

(2) N + 2 and N + 4 are both prime.

hi...

lets see the statements..

(1) $$N = 2^k+ 1$$ for some positive integer k.
if k = 2, N = $$2^2+1=5$$.. YES
if k= 3, N=$$2^3+1=9$$... No
Insuff

(2) N + 2 and N + 4 are both prime
if N+2 and N+4 are prime, ONE of N or N+2 or N+4 will surely be MULTIPLE of 3..
so N can be prime only when N=3, otherwise always NO
Insuff

combined
Nothing new

E

Responding to a PM ...
Why should one of n, n+2 or n+4 be a multiple of 3....
If n is odd, all three will be odd....
1,3,5 or 3,5,7.... In these 3 is multiple of 3
Next three are 5,7,9..., So here 3 has moved out of set but 9 has come in
Say n is even
2,4,6 or 4,6,8 or 6,8,10.... Here 6 is present
Next would be 8,10,12.... So 6 has moved out but 12 has come in...

The reason for this is the multiple of 3 comes after 3..
Similarly if you are looking for say n,n+2,.....n+12 these are 7 terms and any one of them would surely be multiple of all odd prime numbers till 7... 3,5,7

Hi chetan2u,

I have quick question from the highlighted part of your response.

Say we have series of odd consecutive numbers

1,3,5,7,9,11,13
The series is of 7 Consecutive Odd integers

I understand that at least one of the numbers will be divisible by odd numbers < 7 but don't get how one of them would surely be multiple of all odd prime numbers.

What am i missing?
RC & DI Moderator
Joined: 02 Aug 2009
Status:Math and DI Expert
Posts: 11510
Own Kudos [?]: 35949 [0]
Given Kudos: 333
Re: If N is a positive odd integer, is N prime? [#permalink]
AbhimanyuDhar
chetan2u
chetan2u
N is a positive odd integer, is N prime?

(1) $$N = 2^k+ 1$$ for some positive integer k.

(2) N + 2 and N + 4 are both prime.

hi...

lets see the statements..

(1) $$N = 2^k+ 1$$ for some positive integer k.
if k = 2, N = $$2^2+1=5$$.. YES
if k= 3, N=$$2^3+1=9$$... No
Insuff

(2) N + 2 and N + 4 are both prime
if N+2 and N+4 are prime, ONE of N or N+2 or N+4 will surely be MULTIPLE of 3..
so N can be prime only when N=3, otherwise always NO
Insuff

combined
Nothing new

E

Responding to a PM ...
Why should one of n, n+2 or n+4 be a multiple of 3....
If n is odd, all three will be odd....
1,3,5 or 3,5,7.... In these 3 is multiple of 3
Next three are 5,7,9..., So here 3 has moved out of set but 9 has come in
Say n is even
2,4,6 or 4,6,8 or 6,8,10.... Here 6 is present
Next would be 8,10,12.... So 6 has moved out but 12 has come in...

The reason for this is the multiple of 3 comes after 3..
Similarly if you are looking for say n,n+2,.....n+12 these are 7 terms and any one of them would surely be multiple of all odd prime numbers till 7... 3,5,7

Hi chetan2u,

I have quick question from the highlighted part of your response.

Say we have series of odd consecutive numbers

1,3,5,7,9,11,13
The series is of 7 Consecutive Odd integers

I understand that at least one of the numbers will be divisible by odd numbers < 7 but don't get how one of them would surely be multiple of all odd prime numbers.

What am i missing?

Hi
What I meant was there will ve one which will be a multiple of 3, there will be another one that will be multiple of 5 and ao on. So when you multiply all of them, their product will be multiple of 3,5 and 7
Intern
Joined: 04 Apr 2017
Posts: 18
Own Kudos [?]: 2 [0]
Given Kudos: 181
Re: If N is a positive odd integer, is N prime? [#permalink]
Hi chetan2u
I attempted the question in this way:

Stat. (1) Clearly insuff.

Stat. (2) If N+2 & N+4 are primes, then we are sure that N+3 is divisible by 3 (because one from each 3 consecutive numbers must be divisible by 3).
Now if N+3 is divisible by 3, then N must be divisible by 3. So N is not Prime.

RC & DI Moderator
Joined: 02 Aug 2009
Status:Math and DI Expert
Posts: 11510
Own Kudos [?]: 35949 [1]
Given Kudos: 333
Re: If N is a positive odd integer, is N prime? [#permalink]
1
Kudos
HisHo
Hi chetan2u
I attempted the question in this way:

Stat. (1) Clearly insuff.

Stat. (2) If N+2 & N+4 are primes, then we are sure that N+3 is divisible by 3 (because one from each 3 consecutive numbers must be divisible by 3).
Now if N+3 is divisible by 3, then N must be divisible by 3. So N is not Prime.

You are not correct in the highlighted portion.
WHAT if N+2 is 3, as 3 and 5 are prime
Say N+2 and N+4 are 5 and 7, then N is 3, so Prime.
Say N+2 and N+4 are 11 and 13, then N is 9, so not a Prime.
Tutor
Joined: 16 Oct 2010
Posts: 15296
Own Kudos [?]: 67986 [3]
Given Kudos: 442
Location: Pune, India
Re: If N is a positive odd integer, is N prime? [#permalink]
1
Kudos
1
Bookmarks
carcass
If N is a positive odd integer, is N prime?

(1) $$N = 2^k+ 1$$ for some positive integer k.

(2) N + 2 and N + 4 are both prime.

N is a positive odd integer - N can be 1/3/5/7/9/11/...
N may or may not be prime.

(1) $$N = 2^k+ 1$$ for some positive integer k.
If k = 1, N is 3 (prime).
If k = 3, N is 9 (not prime).
Not sufficient.

(2) N + 2 and N + 4 are both prime.
Is it possible that N, N+2, N+4 (3 consecutive odd numbers) are all prime?
Yes, if N = 3.
3, 5 and 7 are all prime
No, if N is any other value. If N = 9, N+2 = 11 and N+4 = 13 (both prime but N is not prime)

Note that 3 consecutive odd numbers will always have one number which is divisible by 3. To understand this, look at the multiplication table of 3...
3, 6, 9, 12, 15, 18, 21, 24, 27....
It has a third of odd numbers: 3 there, 5 not there, 7 not there, 9 there, 11 not there, 13 not there, 15 there...

Using both statements, note that if N = 3 and 9 work with both statements.
3 is prime, 9 is not.
Hence, both statements are not sufficient alone.
Target Test Prep Representative
Joined: 14 Oct 2015
Status:Founder & CEO
Affiliations: Target Test Prep
Posts: 19444
Own Kudos [?]: 23196 [2]
Given Kudos: 286
Location: United States (CA)
Re: If N is a positive odd integer, is N prime? [#permalink]
2
Kudos
carcass
If N is a positive odd integer, is N prime?

(1) $$N = 2^k+ 1$$ for some positive integer k.

(2) N + 2 and N + 4 are both prime.

Solution:

Statement One Only:
N = 2^k + 1 for some positive integer k.

If k = 1, we see that N = 2^1 + 1 = 3, which is a prime. However, if k = 3, we see that N = 2^3 + 1 = 9, which is not a prime. Statement one alone is not sufficient.

Statement Two Only:
N + 2 and N + 4 are both prime.

If N = 1 (notice that N + 2 = 3 and N + 4 = 5 are both prime), then N is not a prime. However, if N = 3 (notice that N + 2 = 5 and N + 4 = 7 are both prime), then N is a prime. Statement two alone is not sufficient.

Statements One and Two Together:

From statement one, we see that N can be the following numbers:

3, 5, 9, 17, 33, 65, ...

That is, each number is 1 more than a (positive integer) power of 2. Of these numbers, we see that both 3 and 9 satisfy the second statement. That is, if N = 3, N + 2 = 5, and N + 4 = 7 are both prime, and if N = 9, N + 2 = 11, and N + 4 = 13 are both prime also. Since we already have two possible values of N (and maybe more), the two statements together are still not sufficient.

Intern
Joined: 24 Oct 2016
Posts: 11
Own Kudos [?]: 11 [0]
Given Kudos: 32
Re: If N is a positive odd integer, is N prime? [#permalink]
By St 1:
N=2^0+1 =1 ODD NOT PRIME AND K CANNOT BE 0 AS K IS + INTEGER
N= 2^1+1=3 ODD PRIME
N= 2^2+1=5 ODD PRIME
N= 2^3+1=9 ODD COMPOSITE -----------------------> 1) NOT SUFF : N{3,5}

By St 2:

N=1; 3,5 PRIME
N=3; 5,7 PRIME
N=5; 7,9 PRIME, NOT PRIME
N=7; 9,11 NOT PRIME, PRIME
N=9; 11,13 PRIME---------------------------> 2) NOT SUFF : N{1,3,9}

By St 1+2:

1) N={3,5}
2) N={1,3,9}

SO N=3 ; 1+2 SUFFICIENT. Bunuel - kindly help me find my mistake
Math Expert
Joined: 02 Sep 2009
Posts: 95467
Own Kudos [?]: 657818 [0]
Given Kudos: 87247
If N is a positive odd integer, is N prime? [#permalink]
sidchandan
If N is a positive odd integer, is N prime?

(1) $$N = 2^k+ 1$$ for some positive integer k.

(2) N + 2 and N + 4 are both prime.

By St 1:
N=2^0+1 =1 ODD NOT PRIME AND K CANNOT BE 0 AS K IS + INTEGER
N= 2^1+1=3 ODD PRIME
N= 2^2+1=5 ODD PRIME
N= 2^3+1=9 ODD COMPOSITE -----------------------> 1) NOT SUFF : N{3,5}

By St 2:

N=1; 3,5 PRIME
N=3; 5,7 PRIME
N=5; 7,9 PRIME, NOT PRIME
N=7; 9,11 NOT PRIME, PRIME
N=9; 11,13 PRIME---------------------------> 2) NOT SUFF : N{1,3,9}

By St 1+2:

1) N={3,5}
2) N={1,3,9}

SO N=3 ; 1+2 SUFFICIENT. Bunuel - kindly help me find my mistake

(1) says that "$$N = 2^k+ 1$$ for some positive integer k", which means that N is 1 more than some positive integer power of 2. N could be 3, 5, 9, 17, 33, 65, 129, ... So, from (1), N could take infinitely many values.

(2) says that "N + 2 and N + 4 are both prime". N could be 1, 3, 9, 15, 27, 39, 57, 69, ...

When combining, we can see that N could take more than 1 value. For example, N could be 3 or 9. So, even when we combine the statements, we cannot get the single numerical value of N. Hence not sufficient.

Manager
Joined: 16 Jun 2020
Posts: 103
Own Kudos [?]: 75 [0]
Given Kudos: 504
Re: If N is a positive odd integer, is N prime? [#permalink]
carcass
If N is a positive odd integer, is N prime?

(1) $$N = 2^k+ 1$$ for some positive integer k.

(2) N + 2 and N + 4 are both prime.

1. We can never find out a given number is prime or not unless we know its exact value.
2. If a question only with vague concepts wanted us to reason, it would have to define an acceptable guess-range, such as N < 20 or even N < 10000, to make enumeration possible.

Neither $$N = 2^k+ 1$$ nor N + 2 and N + 4 is a valid statement for reasoning.
There could be a prime number, which satisfies statements above but huge enough, say N > 781216579512121544873157961; there could be no such a number. Who knows it?
Non-Human User
Joined: 09 Sep 2013
Posts: 34816
Own Kudos [?]: 877 [0]
Given Kudos: 0
Re: If N is a positive odd integer, is N prime? [#permalink]
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Re: If N is a positive odd integer, is N prime? [#permalink]
Moderator:
Math Expert
95463 posts