GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Sep 2018, 09:17

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If p^2 – 13p + 40 = q, and p is a positive integer between 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
User avatar
Joined: 11 Feb 2011
Posts: 120
If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post Updated on: 01 Feb 2012, 14:00
2
27
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

60% (01:44) correct 40% (01:51) wrong based on 581 sessions

HideShow timer Statistics

If p^2 – 13p + 40 = q, and p is a positive integer between 1 and 10, inclusive, what is the probability that q < 0?
A. 1/10
B. 1/5
C. 2/5
D. 3/5
E. 3/10

_________________

target:-810 out of 800!


Originally posted by AnkitK on 09 Mar 2011, 07:56.
Last edited by Bunuel on 01 Feb 2012, 14:00, edited 1 time in total.
Edited the question and added the OA
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49320
Re: ___probability____  [#permalink]

Show Tags

New post 09 Mar 2011, 08:37
7
5
Question moved to PS subfourm.

AnkitK wrote:
if p^2-13p+40=q ,and p is a positive integer between 1 and 10 ,inclusive what is the probability that q<0?

please suggest the answers guys.Also provide explanation.I would appreciate the efforts.

thnkx in advance.!
:?:


Welcome to Gmat Club.

Please read and follow: how-to-improve-the-forum-search-function-for-others-99451.html

So please:
Provide answer choices for PS questions.

Also please post PS questions in the PS subforum: gmat-problem-solving-ps-140/
and DS questions in the DS subforum: gmat-data-sufficiency-ds-141/ No posting of PS/DS questions is allowed in the main Math forum.

Question should read:

If p^2 – 13p + 40 = q, and p is a positive integer between 1 and 10, inclusive, what is the probability that q < 0?
A. 1/10
B. 1/5
C. 2/5
D. 3/5
E. 3/10

\(p^2-13p+40=(p-5)(p-8)\) --> \(p^2-13p+40<0\) for \(5<p<8\):
Attachment:
MSP51419ef17g8chg8g5ch00002g8ag3h1ba7ibee0.gif
MSP51419ef17g8chg8g5ch00002g8ag3h1ba7ibee0.gif [ 3.69 KiB | Viewed 9043 times ]
Now, as \(p\) is an integer then \(p^2-13p+40=q<0\) for two values of \(p\) out of 10: 6 and 7, which means that: \(P=\frac{2}{10}=\frac{1}{5}\).

Answer: B.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Manager
Manager
User avatar
Joined: 11 Feb 2011
Posts: 120
Re: ___probability____  [#permalink]

Show Tags

New post 09 Mar 2011, 08:55
Thnkx a ton bunuel for quick solution.Excellent!!
Cheers:P
_________________

target:-810 out of 800!

Retired Moderator
avatar
B
Joined: 16 Nov 2010
Posts: 1451
Location: United States (IN)
Concentration: Strategy, Technology
Premium Member Reviews Badge
Re: ___probability____  [#permalink]

Show Tags

New post 10 Mar 2011, 01:32
(p-5)(p-8) = q

p = 6 or 7 for this to be true, so

2/10 = 1/5
_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

GMAT Club Premium Membership - big benefits and savings

Intern
Intern
avatar
Joined: 04 May 2013
Posts: 44
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 08 Jul 2013, 19:23
1
P is any integer between 1-10, inclusive.
Plug in the each values. It took me about 1:30 min to substitute all the values.

I did this because I can't visualize the graph of the equation other than I know it will be a parabola because of the X^2.

When p = 1, 2, 3, 4, 5, 8, 9, 10 the value of q is not negative.
Only time q is negative is when p = 6 or 7.
Probability 2/10 = 1/5 = B
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 614
Premium Member
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 08 Jul 2013, 21:49
2
jjack0310 wrote:
P is any integer between 1-10, inclusive.
Plug in the each values. It took me about 1:30 min to substitute all the values.

I did this because I can't visualize the graph of the equation other than I know it will be a parabola because of the X^2.

When p = 1, 2, 3, 4, 5, 8, 9, 10 the value of q is not negative.
Only time q is negative is when p = 6 or 7.
Probability 2/10 = 1/5 = B


Just a thought: Even if you can't visualize the graph, just to save up some precious time,

Once you factorize the quadratic as this : (p-5)(p-8); we have to find out the values of p, in the range [1,10] which will make it negative.

Or (p-5)(p-8)<0 . Now this is only possible if (p-5) and (p-8) have opposite signs,i.e.

I. p-5>0 AND p-8<0 \(\to\) p>5 AND p<8 \(\to\) 5<p<8

OR

II.p-5<0 and p-8>0\(\to\) p<5 AND p>8\(\to\) Invalid range.

Nonetheless, any logical way that gets you the valid answer is correct.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Manager
Manager
avatar
Joined: 29 Mar 2010
Posts: 122
Location: United States
Concentration: Finance, International Business
GMAT 1: 590 Q28 V38
GPA: 2.54
WE: Accounting (Hospitality and Tourism)
GMAT ToolKit User
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 16 Sep 2013, 01:22
Is this question not just easy enough and factor and then plug in numbers??

if: \(p^2-13p+40\) Factors out to (p-8)(p-5)=q, which can easily be done in your head very quickly.

Then make a list of numbers that would give a negative result.

It can only be 2 numbers 6 and 7, since anything over 7 yields either 0 or a positive number, and anything less than 6 yields a positive number, there can only be two cases which would satisfy the solution. Is making a graph really necessary?
Making it 2/10 or 1/5
_________________

4/28 GMATPrep 42Q 36V 640

Intern
Intern
avatar
Joined: 27 Mar 2014
Posts: 6
Concentration: Accounting
GMAT Date: 09-04-2014
GPA: 4
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 20 Aug 2014, 22:10
P(P-13) plus 40 = q

while testing the values q is negative only when p is 7 or 6

thus the answer is 2/10 or 1/5
Senior Manager
Senior Manager
User avatar
Joined: 20 Aug 2015
Posts: 392
Location: India
GMAT 1: 760 Q50 V44
If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 20 Nov 2015, 01:46
1
AnkitK wrote:
If p^2 – 13p + 40 = q, and p is a positive integer between 1 and 10, inclusive, what is the probability that q < 0?
A. 1/10
B. 1/5
C. 2/5
D. 3/5
E. 3/10


Given: \(p^2 – 13p + 40\) = q, 1< p < 10
Required: Probability of q < 0

\(p^2 – 13p + 40\) = (p -8)(p-5) = q

We need q < 0
Hence
(p -5)(p-8) < 0

Hence 5< p < 8.
Only two integral values lie in the range: 6 and 7

Probability = 2/10 = 1/5
Option B.

Solving an inequality with a less than sign:
The value of the variable will be greater than the smaller value and smaller than the greater value.
i.e. It will lie between the extremes.

Solving an inequality with a greater than sign:
The value of the variable will be smaller than the smaller value and greater than the greater value.
i.e. It can take all the values except the values in the range.
Intern
Intern
avatar
B
Joined: 08 Feb 2015
Posts: 13
GMAT 1: 650 Q46 V34
GMAT 2: 620 Q45 V30
GMAT 3: 700 Q45 V40
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 13 Jan 2017, 21:58
The quadratic equation could be expanded to (p-5)(p-8)=q
If p is a member of the set [1,10], p could be one of the 10 choices.

The equation (p-5)(p-8) will work out to < 0 for the range (5,8). The integers between 5 and 8 exclusive are 6 and 7.

The probability that q <0 = probability(p = 5 or p = 8 is selected) = 2/10 = 1/5
Director
Director
User avatar
G
Joined: 26 Oct 2016
Posts: 649
Location: United States
Concentration: Marketing, International Business
Schools: HBS '19
GMAT 1: 770 Q51 V44
GPA: 4
WE: Education (Education)
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 13 Mar 2017, 03:44
1
Factor the quadratic:
p^2 – 13p + 40 = q
(p – 8)(p – 5) = q
For p = 5 and p = 8, q = 0. Between p = 5 and p = 8, q has a negative sign, as (p – 8) is negative and (p – 5) is positive. With a total of 10 possible integer p values, only two (p = 6 and p = 7) fall in the range 5 < p < 8, so the probability is 2/10 or 1/5.
The correct answer is B.
_________________

Thanks & Regards,
Anaira Mitch

Target Test Prep Representative
User avatar
G
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 3515
Location: United States (CA)
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 15 Mar 2017, 16:45
AnkitK wrote:
If p^2 – 13p + 40 = q, and p is a positive integer between 1 and 10, inclusive, what is the probability that q < 0?
A. 1/10
B. 1/5
C. 2/5
D. 3/5
E. 3/10


We can factor the given equation:

p^2 – 13p + 40 = q

(p - 5)(p - 8) = q

We see that in order for q to be negative, either (p - 5) is negative and (p - 8) is positive OR (p - 5) is positive and (p - 8) is negative.

Analyzing our expression a bit further, we see that it only produces a negative product when p = 6 and p = 7.

Thus, the probability that q < 0 is 2/10 = 1/5.

Answer: B
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern
Intern
avatar
B
Joined: 23 Jul 2013
Posts: 15
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1  [#permalink]

Show Tags

New post 22 Jul 2018, 19:41
1
Bunuel wrote:
Question moved to PS subfourm.

Question should read:

If p^2 – 13p + 40 = q, and p is a positive integer between 1 and 10, inclusive, what is the probability that q < 0?
A. 1/10
B. 1/5
C. 2/5
D. 3/5
E. 3/10

\(p^2-13p+40=(p-5)(p-8)\) --> \(p^2-13p+40<0\) for \(5<p<8\):
Attachment:
MSP51419ef17g8chg8g5ch00002g8ag3h1ba7ibee0.gif
Now, as \(p\) is an integer then \(p^2-13p+40=q<0\) for two values of \(p\) out of 10: 6 and 7, which means that: \(P=\frac{2}{10}=\frac{1}{5}\).

Answer: B.


Thanks for showing the explanation using the parabola Bunuel.

Was curious to understand how will it look like if for eg the question put the condition of q>0. In that case, the quadratic would turn out to be (p-8)(p-5) > 0. In such a case the parabola will open downward but then how do we make this out as the constant a (in a*p^2) is in any case +ve..
GMAT Club Bot
Re: If p^2 – 13p + 40 = q, and p is a positive integer between 1 &nbs [#permalink] 22 Jul 2018, 19:41
Display posts from previous: Sort by

If p^2 – 13p + 40 = q, and p is a positive integer between 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.