GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 21 Oct 2019, 15:48 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  If p, q, and r are different positive integers such that p + q + r = 6

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 58396
If p, q, and r are different positive integers such that p + q + r = 6  [#permalink]

Show Tags

2
16 00:00

Difficulty:   95% (hard)

Question Stats: 41% (02:26) correct 59% (02:47) wrong based on 253 sessions

HideShow timer Statistics

If p, q, and r are different positive integers such that p + q + r = 6, what is the value of x ?

(1) The average of x^p and x^q is x^r.

(2) The average of x^p and x^r is not x^q.

_________________
Senior Manager  Joined: 02 Mar 2012
Posts: 270
Schools: Schulich '16
Re: If p, q, and r are different positive integers such that p + q + r = 6  [#permalink]

Show Tags

2
E

p,q and r can be any of the numbers 1,2 or 3

lets take p=1,q=2,r=3

1. x+x^2=2x^3

insuff as x can be 0 or 1

2 x+x^3=2x^2

insuf as x can be 0 or 1

taking togerther.

x can be 0 or 1

SO E
Math Expert V
Joined: 02 Sep 2009
Posts: 58396
Re: If p, q, and r are different positive integers such that p + q + r = 6  [#permalink]

Show Tags

1
3
Bunuel wrote:
If p, q, and r are different positive integers such that p + q + r = 6, what is the value of x ?

(1) The average of x^p and x^q is x^r.

(2) The average of x^p and x^r is not x^q.

MANHATTAN GMAT OFFICIAL SOLUTION:

Before beginning work on the statements, note that p, q, and r are different positive integers that add up to 6. Only one set of three numbers satisfies that condition: 1, 2, and 3. Therefore, in some order, p, q, and r are 1, 2, and 3.

(1) INSUFFICIENT: Three cases are possible:

The average of x and x^2 is x^3;
The average of x and x^3 is x^2;
The average of x^2 and x^3 is x.
The first case gives the equation {x+x^2}/2=x^3 , or x+x^2=2x^3. This is a factorable quadratic equation:

2x^3-x^2-x=0
x(2x^2-x-1)=0
x(2x+1)(x-1)=0

This equation gives three solutions for x: x = 0, x = –1/2, and x = 1. Because there are multiple possible values for x, the statement is not sufficient. (There’s no need to investigate the other possible cases at this point, since you’ve just determined that this statement is insufficient.)

(2) INSUFFICIENT: Just about any value for x will make this statement true (that the average of x^pxp and x^rxr is not x^qxq). For instance, if p = 1, q = 2, and r = 3, then the only requirement is that the average of x and x^3x3 not be equal to x^2x2. Try random values of x: If x = 2, then the average of x and x^3x3 is (2 + 8)/2 = 5, which is not equal to x^2=4x2 = 4. If x = 3, then the average of x and x^3x3 is (3 + 27)/2 = 15, which is not equal to x^2=9x2 = 9. Because there are multiple possible values for x, the statement is not sufficient.

(1) AND (2) INSUFFICIENT: In order to determine the values of x that satisfy both statements, revisit the cases derived in statement 1, this time solving for all of them.

Case #1: If the average of x and x^2 is x^3, then, as shown above, x can be any of 0, –1/2, 1.

Case #2: If the average of x and x^3 is x^2, then {x+x^3}/2=x^2, or x+x^3=2x^2. This is also a factorable equation: x^3-2x^2+x=0 ––> x(x^2-2x+1)=0 ––> x(x-1)^2=0. Therefore, x can be either 0 or 1.
Case #3: If the average of x^2 and x^3 is x, then {x^2+x^3}/2=x, or x^2+x^3=2x. This too is a factorable equation: x^3+x^2-2x=0 ––> x(x^2+x-2)=0 ––> x(x+2)(x-1)=0. Therefore, x can be any of 0, –2, 1.

There are thus four possible values of x according to statement 1: x = –2, –1/2, 0, 1.

For the values x = 0 or 1, the average of two terms is equal to the third term in all 3 cases, so these two values can’t satisfy statement 2 (where the average of the first two terms cannot equal the third term). Discard the values 0 and 1.

On the other hand, if x = –2, p and q are 2 and 3 (in either order), and r = 1, then both statements are satisfied. The average of x^p and x^q is x^r: (4 + -8)/2 = -2, so statement 1 is true. In addition, the average of x^p and x^r is not x^q: (4 + -2)/2 does not equal -8, so statement 2 is true. Therefore, x could equal –2.

What about the final case? If x = –1/2, p and q are 1 and 2 (in either order), and r = 3, then both statements are also satisfied. The average of x^p and x^q is x^r: (–1/2 + 1/4)/2 = –1/8, so statement 1 is true. In addition, the average of x^p and x^r is not x^q: (–1/2 + –1/8)/2 does not equal 1/4, so statement 2 is true. Therefore, x can still be either –2 or –1/2. Both statements together are still not sufficient to answer the question.

The correct answer is (E).
_________________
Current Student B
Joined: 23 May 2013
Posts: 183
Location: United States
Concentration: Technology, Healthcare
GMAT 1: 760 Q49 V45 GPA: 3.5
Re: If p, q, and r are different positive integers such that p + q + r = 6  [#permalink]

Show Tags

Bunuel wrote:
Bunuel wrote:
If p, q, and r are different positive integers such that p + q + r = 6, what is the value of x ?

(1) The average of x^p and x^q is x^r.

(2) The average of x^p and x^r is not x^q.

MANHATTAN GMAT OFFICIAL SOLUTION:

Before beginning work on the statements, note that p, q, and r are different positive integers that add up to 6. Only one set of three numbers satisfies that condition: 1, 2, and 3. Therefore, in some order, p, q, and r are 1, 2, and 3.

(1) INSUFFICIENT: Three cases are possible:

The average of x and x^2 is x^3;
The average of x and x^3 is x^2;
The average of x^2 and x^3 is x.
The first case gives the equation {x+x^2}/2=x^3 , or x+x^2=2x^3. This is a factorable quadratic equation:

2x^3-x^2-x=0
x(2x^2-x-1)=0
x(2x+1)(x-1)=0

This equation gives three solutions for x: x = 0, x = –1/2, and x = 1. Because there are multiple possible values for x, the statement is not sufficient. (There’s no need to investigate the other possible cases at this point, since you’ve just determined that this statement is insufficient.)

(2) INSUFFICIENT: Just about any value for x will make this statement true (that the average of x^pxp and x^rxr is not x^qxq). For instance, if p = 1, q = 2, and r = 3, then the only requirement is that the average of x and x^3x3 not be equal to x^2x2. Try random values of x: If x = 2, then the average of x and x^3x3 is (2 + 8)/2 = 5, which is not equal to x^2=4x2 = 4. If x = 3, then the average of x and x^3x3 is (3 + 27)/2 = 15, which is not equal to x^2=9x2 = 9. Because there are multiple possible values for x, the statement is not sufficient.

(1) AND (2) INSUFFICIENT: In order to determine the values of x that satisfy both statements, revisit the cases derived in statement 1, this time solving for all of them.

Case #1: If the average of x and x^2 is x^3, then, as shown above, x can be any of 0, –1/2, 1.

Case #2: If the average of x and x^3 is x^2, then {x+x^3}/2=x^2, or x+x^3=2x^2. This is also a factorable equation: x^3-2x^2+x=0 ––> x(x^2-2x+1)=0 ––> x(x-1)^2=0. Therefore, x can be either 0 or 1.
Case #3: If the average of x^2 and x^3 is x, then {x^2+x^3}/2=x, or x^2+x^3=2x. This too is a factorable equation: x^3+x^2-2x=0 ––> x(x^2+x-2)=0 ––> x(x+2)(x-1)=0. Therefore, x can be any of 0, –2, 1.

There are thus four possible values of x according to statement 1: x = –2, –1/2, 0, 1.

For the values x = 0 or 1, the average of two terms is equal to the third term in all 3 cases, so these two values can’t satisfy statement 2 (where the average of the first two terms cannot equal the third term). Discard the values 0 and 1.

On the other hand, if x = –2, p and q are 2 and 3 (in either order), and r = 1, then both statements are satisfied. The average of x^p and x^q is x^r: (4 + -8)/2 = -2, so statement 1 is true. In addition, the average of x^p and x^r is not x^q: (4 + -2)/2 does not equal -8, so statement 2 is true. Therefore, x could equal –2.

What about the final case? If x = –1/2, p and q are 1 and 2 (in either order), and r = 3, then both statements are also satisfied. The average of x^p and x^q is x^r: (–1/2 + 1/4)/2 = –1/8, so statement 1 is true. In addition, the average of x^p and x^r is not x^q: (–1/2 + –1/8)/2 does not equal 1/4, so statement 2 is true. Therefore, x can still be either –2 or –1/2. Both statements together are still not sufficient to answer the question.

The correct answer is (E).

I actually think the logic from Manhattan is backwards. If we would have arrived at the conclusion that one or both of the statements were sufficient on their own after choosing values for p,q, and r, then we would have to keep checking the other arrangement of values of p,q, and r to make sure that we weren't missing any cases. If we pick one arrangement, however, and determine that x could still have multiple values with both statements taken into account, then we can safely say that we need more information (as in hsbinfy's approach).
Math Revolution GMAT Instructor V
Joined: 16 Aug 2015
Posts: 8024
GMAT 1: 760 Q51 V42 GPA: 3.82
Re: If p, q, and r are different positive integers such that p + q + r = 6  [#permalink]

Show Tags

There are 4 variables (p, q, r and x) and 1 equation (p+q+r=6) in the original condition. In order to match the number of variables and the number of equations, we need 3 equations. Since con 1) and con 2) each has 1 equation, there is a high chance that E is the correct answer. Using 1) & 2), from x+x^3=2x or x^3+x^2=2x, we get x=-1/2, -2. The answer is not unique and the condition is not sufficient. Hence, the correct answer is E.

- For cases where we need 3 more equations, such as original conditions with “3 variables”, or “4 variables and 1 equation”, or “5 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 80% chance that E is the answer (especially about 90% of 2 by 2 questions where there are more than 3 variables), while C has 15% chance. These two are the majority. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since E is most likely to be the answer using 1) and 2) separately according to DS definition (It saves us time). Obviously there may be cases where the answer is A, B, C or D.
_________________
Intern  B
Joined: 14 Aug 2018
Posts: 3
Re: If p, q, and r are different positive integers such that p + q + r = 6  [#permalink]

Show Tags

how could be solved in 2 mins? It is tough Re: If p, q, and r are different positive integers such that p + q + r = 6   [#permalink] 23 Oct 2018, 08:11
Display posts from previous: Sort by

If p, q, and r are different positive integers such that p + q + r = 6

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  