Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Join IIMU Director to gain an understanding of DEM program, its curriculum & about the career prospects through a Q&A chat session. Dec 11th at 8 PM IST and 6:30 PST
Enter The Economist GMAT Tutor’s Brightest Minds competition – it’s completely free! All you have to do is take our online GMAT simulation test and put your mind to the test. Are you ready? This competition closes on December 13th.
Attend a Veritas Prep GMAT Class for Free. With free trial classes you can work with a 99th percentile expert free of charge. Learn valuable strategies and find your new favorite instructor; click for a list of upcoming dates and teachers.
Does GMAT RC seem like an uphill battle? e-GMAT is conducting a free webinar to help you learn reading strategies that can enable you to solve 700+ level RC questions with at least 90% accuracy in less than 10 days.
Answer to this question cannot be D, it should be B (II only).
To solve this question you don't need to calculate a, b, and c. We should put the given three points on the XY-plane and we'll get: parabola \(f(x)=ax^2+bx+c\) will have the vertex at \(x=1\), halfway between \(x=-3\) and \(x=5\), as \(f(-3)=0=f(5)\). Plus, as \(f(0)=3\) the parabola would be downward. As the parabola is downward, value of f(x) at x=1, f(1), is the the greatest value of f(x). As we move from x=1 to either of direction the value of f(x) will decrease. So any \(f(m)\) would be greater than \(f(n)\) if \(m\) is closer to \(x=1\) than \(n\). For example \(f(9)>f(10)>f(-12)\) or \(f(6)=f(-4)\) or \(f(-5)=f(7)>f(-100)\).
Hence I. \(f(-1)>f(2)\) is false, as \(x=2\) is 1 farther from \(x=1\) and \(x=-1\) is 2 farther than \(x=1\). (True inequality would be \(f(-1)<f(2)\)).
II. \(f(1)>f(0)\) is true as \(f(1)\) is vertex and more than any \(f(x)\).
III. \(f(2)>f(1)\) is false as no \(f(x)\) is more than \(f(1)\). (The correct would be \(f(2)<f(1)\)).
Re: If the parabola represented by f(x) = ax^2 + bx + c passes
[#permalink]
Show Tags
03 Mar 2010, 00:18
1
3
apoorvasrivastva wrote:
@bunnuel i have dited my post for the st I ..it was a typo error i am sorry abt that
it is f(-1) > f(-2)
i am not clear as to how did u get the vertex as x=1
Intersection points of parabola with x-axis are \((-3,0)\) and \((5,0)\):
-----(-3)--0----(5)---, as parabola is symmetric, the x coordinate of the vertex must be halfway between \(x=-3\) and \(x=5\) --> \(x=\frac{-3+5}{2}=1\). As parabola is downward, \(f(x)\) naturally will have it's max values at vertex \(x=1\), \(f(1)\).
As for the typo in the stem. If I is saying: \(f(-1) > f(-2)\), then it's true as \(x=-1\) is closer to \(x=1\), than \(x=-2\), which means that \(f(-1)>f(-2)\).
_________________
Re: If the parabola represented by f(x) = ax^2 + bx + c passes
[#permalink]
Show Tags
04 Mar 2010, 21:22
amazing explanation Bunuel. I would normally have found a, b and c and then solved. Thanks for showing me the way to think more than the way you solved the problem.
Answer to this question cannot be D, it should be B (II only).
To solve this question you don't need to calculate a, b, and c. We should put the given three points on the XY-plane and we'll get: parabola \(f(x)=ax^2+bx+c\) will have the vertex at \(x=1\), halfway between \(x=-3\) and \(x=5\), as \(f(-3)=0=f(5)\). Plus, as \(f(0)=3\) the parabola would be downward. As the parabola is downward, value of f(x) at x=1, f(1), is the the greatest value of f(x). As we move from x=1 to either of direction the value of f(x) will decrease. So any \(f(m)\) would be greater than \(f(n)\) if \(m\) is closer to \(x=1\) than \(n\). For example \(f(9)>f(10)>f(-12)\) or \(f(6)=f(-4)\) or \(f(-5)=f(7)>f(-100)\).
Hence I. \(f(-1)>f(2)\) is false, as \(x=2\) is 1 farther from \(x=1\) and \(x=-1\) is 2 farther than \(x=1\). (True inequality would be \(f(-1)<f(2)\)).
II. \(f(1)>f(0)\) is true as \(f(1)\) is vertex and more than any \(f(x)\).
III. \(f(2)>f(1)\) is false as no \(f(x)\) is more than \(f(1)\). (The correct would be \(f(2)<f(1)\)).
Hope it's clear.
HI Bunuel,
Please explain the red part , what i understood from making graph , if we move left from the axis point certainly value of f(x) decreases but if we move right side from the axis where x =1, value of f(x) will increase till certain point and then will decrease, so how can we deduce that value of f(x) is max at x =1
Answer to this question cannot be D, it should be B (II only).
To solve this question you don't need to calculate a, b, and c. We should put the given three points on the XY-plane and we'll get: parabola \(f(x)=ax^2+bx+c\) will have the vertex at \(x=1\), halfway between \(x=-3\) and \(x=5\), as \(f(-3)=0=f(5)\). Plus, as \(f(0)=3\) the parabola would be downward. As the parabola is downward, value of f(x) at x=1, f(1), is the the greatest value of f(x). As we move from x=1 to either of direction the value of f(x) will decrease. So any \(f(m)\) would be greater than \(f(n)\) if \(m\) is closer to \(x=1\) than \(n\). For example \(f(9)>f(10)>f(-12)\) or \(f(6)=f(-4)\) or \(f(-5)=f(7)>f(-100)\).
Hence I. \(f(-1)>f(2)\) is false, as \(x=2\) is 1 farther from \(x=1\) and \(x=-1\) is 2 farther than \(x=1\). (True inequality would be \(f(-1)<f(2)\)).
II. \(f(1)>f(0)\) is true as \(f(1)\) is vertex and more than any \(f(x)\).
III. \(f(2)>f(1)\) is false as no \(f(x)\) is more than \(f(1)\). (The correct would be \(f(2)<f(1)\)).
Hope it's clear.
HI Bunuel,
Please explain the red part , what i understood from making graph , if we move left from the axis point certainly value of f(x) decreases but if we move right side from the axis where x =1, value of f(x) will increase till certain point and then will decrease, so how can we deduce that value of f(x) is max at x =1
Answer to this question cannot be D, it should be B (II only).
To solve this question you don't need to calculate a, b, and c. We should put the given three points on the XY-plane and we'll get: parabola \(f(x)=ax^2+bx+c\) will have the vertex at \(x=1\), halfway between \(x=-3\) and \(x=5\), as \(f(-3)=0=f(5)\). Plus, as \(f(0)=3\) the parabola would be downward. As the parabola is downward, value of f(x) at x=1, f(1), is the the greatest value of f(x). As we move from x=1 to either of direction the value of f(x) will decrease. So any \(f(m)\) would be greater than \(f(n)\) if \(m\) is closer to \(x=1\) than \(n\). For example \(f(9)>f(10)>f(-12)\) or \(f(6)=f(-4)\) or \(f(-5)=f(7)>f(-100)\).
Hence I. \(f(-1)>f(2)\) is false, as \(x=2\) is 1 farther from \(x=1\) and \(x=-1\) is 2 farther than \(x=1\). (True inequality would be \(f(-1)<f(2)\)).
II. \(f(1)>f(0)\) is true as \(f(1)\) is vertex and more than any \(f(x)\).
III. \(f(2)>f(1)\) is false as no \(f(x)\) is more than \(f(1)\). (The correct would be \(f(2)<f(1)\)).
Answer to this question cannot be D, it should be B (II only).
To solve this question you don't need to calculate a, b, and c. We should put the given three points on the XY-plane and we'll get: parabola \(f(x)=ax^2+bx+c\) will have the vertex at \(x=1\), halfway between \(x=-3\) and \(x=5\), as \(f(-3)=0=f(5)\). Plus, as \(f(0)=3\) the parabola would be downward. As the parabola is downward, value of f(x) at x=1, f(1), is the the greatest value of f(x). As we move from x=1 to either of direction the value of f(x) will decrease. So any \(f(m)\) would be greater than \(f(n)\) if \(m\) is closer to \(x=1\) than \(n\). For example \(f(9)>f(10)>f(-12)\) or \(f(6)=f(-4)\) or \(f(-5)=f(7)>f(-100)\).
Hence I. \(f(-1)>f(2)\) is false, as \(x=2\) is 1 farther from \(x=1\) and \(x=-1\) is 2 farther than \(x=1\). (True inequality would be \(f(-1)<f(2)\)).
II. \(f(1)>f(0)\) is true as \(f(1)\) is vertex and more than any \(f(x)\).
III. \(f(2)>f(1)\) is false as no \(f(x)\) is more than \(f(1)\). (The correct would be \(f(2)<f(1)\)).
Hope it's clear.
Hi Bunuel, could you please explain the highlighted part. How do we infer that parabola is downward? According to theory we only know that parabola is downward if a<0.
_________________
If time was on my side, I'd still have none to waste......
Answer to this question cannot be D, it should be B (II only).
To solve this question you don't need to calculate a, b, and c. We should put the given three points on the XY-plane and we'll get: parabola \(f(x)=ax^2+bx+c\) will have the vertex at \(x=1\), halfway between \(x=-3\) and \(x=5\), as \(f(-3)=0=f(5)\). Plus, as \(f(0)=3\) the parabola would be downward. As the parabola is downward, value of f(x) at x=1, f(1), is the the greatest value of f(x). As we move from x=1 to either of direction the value of f(x) will decrease. So any \(f(m)\) would be greater than \(f(n)\) if \(m\) is closer to \(x=1\) than \(n\). For example \(f(9)>f(10)>f(-12)\) or \(f(6)=f(-4)\) or \(f(-5)=f(7)>f(-100)\).
Hence I. \(f(-1)>f(2)\) is false, as \(x=2\) is 1 farther from \(x=1\) and \(x=-1\) is 2 farther than \(x=1\). (True inequality would be \(f(-1)<f(2)\)).
II. \(f(1)>f(0)\) is true as \(f(1)\) is vertex and more than any \(f(x)\).
III. \(f(2)>f(1)\) is false as no \(f(x)\) is more than \(f(1)\). (The correct would be \(f(2)<f(1)\)).
Hope it's clear.
Hi Bunuel, could you please explain the highlighted part. How do we infer that parabola is downward? According to theory we only know that parabola is downward if a<0.
Hint: put the given three points on the plane,
_________________