Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If the vertices of a triangle have coordinates (x,1), (5,1), and (5,y) where x<5 and y>1, what is the area of the triangle?

Look at the diagram below:

Notice that vertex (x,1) will be somewhere on the green line segment and the vertex (5,y) will be somewhere on the blue line segment. So, in any case our triangle will be right angled, with a right angle at vertex (5, 1). Next, the length of the leg on the green line segment will be \(5-x\) and the length of the leg on the blue line segment will by \(y-1\). So, the area of the triangle will be: \(area=\frac{1}{2}*(5-x)*(y-1)\)

(1) x=y --> since \(x<5\) and \(y>1\) then both x and y are in the range (1,5): \(1<(x=y)<5\). If we substitute \(y\) with \(x\) we'll get: \(area=\frac{1}{2}*(5-x)*(y-1)=\frac{1}{2}*(5-x)*(x-1)\), different values of \(x\) give different values for the area (even knowing that \(1<x<5\)). Not sufficient.

(2) Angle at the vertex (x,1) is equal to angle at the vertex (5,y) --> we have an isosceles right triangle: \(5-x=y-1\). Again if we substitute \(y-1\) with \(5-x\) we'll get: \(area=\frac{1}{2}*(5-x)*(y-1)=\frac{1}{2}*(5-x)*(5-x)\), different values of \(x\) give different values for the area. Not sufficient.

(1)+(2) \(x=y\) and \(5-x=y-1\) --> solve for \(x\): \(x=y=3\) --> \(area=\frac{1}{2}*(5-3)*(3-1)=2\). Sufficient.

hi tania..ill try.. firstly the 3 set of coord tells us that it is a right angled triangle(right angle is at vertex(5,1)) SI tells us that x=y....x and y can be any values...not suff.. SII tells us the angles at two other vertices are 45...so the other two sides are equal...can have many values.. eq we get from it is 5-x=y+1.... not suff combined 5-x =x+1... so x=y=3.. suff.. C ans
_________________

Can we have B as the answer, since we know that angles are equal, the only coordinate that will give same the distance will be 3. Hence, we dont need option A for any support. Kindly help!

Can we have B as the answer, since we know that angles are equal, the only coordinate that will give same the distance will be 3. Hence, we dont need option A for any support. Kindly help!

Regards

That's not correct. Any \(x<5\) and \(y>1\), which satisfy \(5-x=y-1\) (\(x+y=6\)) will give equal legs and thus equal angles. For example, \(x=4\), \(y=2\), or \(x=3.5\), \(y=2.5\), ...

Re: If the vertices of a triangle have coordinates (x,1), (5,1), [#permalink]

Show Tags

30 Oct 2017, 16:08

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________