Last visit was: 20 Nov 2025, 07:23 It is currently 20 Nov 2025, 07:23
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
lhskev
Joined: 14 Nov 2010
Last visit: 29 Jan 2012
Posts: 1
Own Kudos:
34
 [34]
Posts: 1
Kudos: 34
 [34]
4
Kudos
Add Kudos
30
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,420
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,420
Kudos: 778,520
 [11]
6
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
User avatar
anshumishra
Joined: 25 Jun 2010
Last visit: 21 Jan 2012
Posts: 57
Own Kudos:
Posts: 57
Kudos: 159
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
craky
Joined: 27 Jul 2010
Last visit: 29 Jan 2013
Posts: 103
Own Kudos:
Given Kudos: 15
Location: Prague
Concentration: Finance
Schools:University of Economics Prague
GMAT 1: 700 Q48 V38
Posts: 103
Kudos: 315
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Nice explenation guys.
avatar
ace312
Joined: 05 Aug 2011
Last visit: 30 Sep 2015
Posts: 62
Own Kudos:
Given Kudos: 14
Location: United States
Concentration: General Management, Sustainability
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
lhskev
If X is an integer, how many even numbers does set (0, x, x^2, x^3,.... x^9) contain?

(1) The mean of the set is even
(2) The standard deviation of the set is 0


Can someone please explain how to get to this answer?

Thank you.

If x is an integer, how many even numbers does set (0, x, x^2, x^3,.... x^9) contain?

We have the set with 10 terms: {0, x, x^2, x^3, ..., x^9}.

Note that if \(x=odd\) then the set will contain one even (0) and 9 odd terms (as if \(x=odd\), then \(x^2=odd\), \(x^3=odd\), ..., \(x^9=odd\)) and if \(x=even\) then the set will contain all even terms (as if \(x=even\), then \(x^2=even\), \(x^3=even\), ..., \(x^9=even\)).

Also note that: standard deviation is always more than or equal to zero: \(SD\geq{0}\). SD is 0 only when the list contains all identical elements (or which is same only 1 element).

(1) The mean of the set is even --> mean=sum/10=even --> sum=10*even=even --> 0+x+x^2+x^3+...+x^9=even --> x+x^2+x^3+...+x^9=even --> x=even (if x=odd then the sum of 9 odd numbers would be odd) --> all 10 terms in the set are even. Sufficient.

(2) The standard deviation of the set is 0 --> all 10 terms are identical --> as the first term is 0, then all other terms must equal to zero --> all 10 terms in the set are even. Sufficient.

Answer: D.


I am a little confused about statement 1) especially if x is odd. For eg: consider x=3. Now if there are 3 elements in the set, they are (0,3,9). The mean of the set will be (0+3+9)/3=4 which is EVEN
Now consider 4 terms in this series with x=3 the set will be (0,3,9,27) then the mean would be (0+3+9+27)/4 = 39/4 which is not even. So x could be odd and still have the Mean of the set to be even. So A is insufficient. What am I missing, thanks
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,326
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ace312
Bunuel
lhskev
If X is an integer, how many even numbers does set (0, x, x^2, x^3,.... x^9) contain?

(1) The mean of the set is even
(2) The standard deviation of the set is 0


Can someone please explain how to get to this answer?

Thank you.

If x is an integer, how many even numbers does set (0, x, x^2, x^3,.... x^9) contain?

We have the set with 10 terms: {0, x, x^2, x^3, ..., x^9}.

Note that if \(x=odd\) then the set will contain one even (0) and 9 odd terms (as if \(x=odd\), then \(x^2=odd\), \(x^3=odd\), ..., \(x^9=odd\)) and if \(x=even\) then the set will contain all even terms (as if \(x=even\), then \(x^2=even\), \(x^3=even\), ..., \(x^9=even\)).

Also note that: standard deviation is always more than or equal to zero: \(SD\geq{0}\). SD is 0 only when the list contains all identical elements (or which is same only 1 element).

(1) The mean of the set is even --> mean=sum/10=even --> sum=10*even=even --> 0+x+x^2+x^3+...+x^9=even --> x+x^2+x^3+...+x^9=even --> x=even (if x=odd then the sum of 9 odd numbers would be odd) --> all 10 terms in the set are even. Sufficient.

(2) The standard deviation of the set is 0 --> all 10 terms are identical --> as the first term is 0, then all other terms must equal to zero --> all 10 terms in the set are even. Sufficient.

Answer: D.


I am a little confused about statement 1) especially if x is odd. For eg: consider x=3. Now if there are 3 elements in the set, they are (0,3,9). The mean of the set will be (0+3+9)/3=4 which is EVEN
Now consider 4 terms in this series with x=3 the set will be (0,3,9,27) then the mean would be (0+3+9+27)/4 = 39/4 which is not even. So x could be odd and still have the Mean of the set to be even. So A is insufficient. What am I missing, thanks


consider x=3. Now if there are 3 elements in the set - You cannot have 3 elements. The set must contain \(0, 3, 3^2,3^3,3^4,...,3^9\) - \(10\) elements.
avatar
ssingla
Joined: 01 Jun 2012
Last visit: 14 Oct 2012
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Can you please explain why we are considering 0 as even, because 0 is mostly treated as nether even nor odd. Hence 2) is insufficient.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,420
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,420
Kudos: 778,520
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ssingla
Can you please explain why we are considering 0 as even, because 0 is mostly treated as nether even nor odd. Hence 2) is insufficient.

Zero is an even integer. Zero is nether positive nor negative, but zero is definitely an even number.

An even number is an integer that is "evenly divisible" by 2, i.e., divisible by 2 without a remainder and as zero is evenly divisible by 2 then it must be even (in fact zero is divisible by every integer except zero itself).

For more check Number Theory chapter of Math Book: math-number-theory-88376.html

Hope it helps.
User avatar
sanjoo
Joined: 06 Aug 2011
Last visit: 24 Dec 2016
Posts: 266
Own Kudos:
663
 [1]
Given Kudos: 82
Posts: 266
Kudos: 663
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Tricky Question ...

nice explanation bunuel...

I didnt c zero in set..selected option E..:(
User avatar
shelrod007
Joined: 23 Jan 2013
Last visit: 16 Sep 2016
Posts: 99
Own Kudos:
Given Kudos: 41
Concentration: Technology, Other
Schools: Berkeley Haas
GMAT Date: 01-14-2015
WE:Information Technology (Computer Software)
Schools: Berkeley Haas
Posts: 99
Kudos: 193
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For Stmt A ?

Does it mean if x = odd , then sum is odd , the mean would be = Sum / numbers ( 9 ) in this case which would be

Mean = Sum ( Odd )
------------------ == Odd .. so X can only be even here ...
9 ( Odd )
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,600
Own Kudos:
Posts: 38,600
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105420 posts
496 posts